ISSN 1226-0657

AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE

Yong Sik Yun^a and ChangIl Kim^{b,*}

ABSTRACT. In this paper, we construct an extension (kX, k_X) of a space X such that kX is a weakly Lindelöff space and for any continuous map $f: X \longrightarrow Y$, there is a continuous map $g: kX \longrightarrow kY$ such that $g \mid_X = f$. Moreover, we show that vX is Lindelöff if and only if kX = vX and that for any P'-space X which is weakly Lindelöff, kX = vX.

1. INTRODUCTION

All spaces in this paper are assumed to be Tychonoff spaces and $\beta X(\upsilon X, \text{resp.})$ denotes the Stone-Čech compactification(the Hewitt realcompactification, resp.) of a space X.

One of the many characterizations of $(\beta X, \beta_X)$ is following :

(1) βX is a compact space, and

(2) for any continuous map $f: X \longrightarrow Y$, there is a continuous map $f^{\beta}: \beta X \longrightarrow \beta Y$ such that $f^{\beta}|_{X} = f$ ([5]).

There have been many ramifications from the Stone-Čech compactifications of spaces. In fact, realcompactifications of spaces and zero-dimensional compactifisations of zerodimensional spaces have been studied by various authors ([3], [5]).

The purpose to write this paper is to construct an extension of a space which has similar properties to the above extensions. We first construct an extension (kX, k_X) of a space X such that $vX \subseteq kX \subseteq \beta X$ and kX is a weakly Lindelöff space. We show that for any continuous map $f : X \longrightarrow Y$, there is a continuous map $g: kX \longrightarrow kY$ such that $g \mid_X = f$. Blasco ([1], [2]) showed that for a paracompact (or separable) space X, vX is a Lindelöff space if and only if every separating nest generated intersection ring on X is complete. We show that vX is Lindelöff if and

© 2012 Korean Soc. Math. Educ.

Received by the editors April 9, 2012. Revised June 4, 2012. Accepted June 21, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 54D80, 54D60, 54D20.

Key words and phrases. filter, realcompactification, weakly Lindelöff space.

^{*}Corresponding author.

only if kX = vX. Using these, we then show that kX = X if and only if X is Lindelöff. Finally, we will show that for any P'-space X which is weakly Lindelöff, kX = vX.

For the terminology, we refer to [3] and [5].

2. AN EXTNSION WHICH IS A WEAKLY LINDELÖFF SPACE

For any space X, let Z(X) be the set of all zero-sets in X. A Z(X)-filter is called a z-filter on X.

Definition 2.1. Let X be a space and \mathcal{F} a z-filter on X. Then \mathcal{F} is called

(1) real if it has the countable intersection property, and

(2) free(fixed, resp.) if $\cap \{F \mid F \in \mathcal{F}\} = \emptyset(\cap \{F \mid F \in \mathcal{F}\} \neq \emptyset, \text{ resp.}).$

A space X is called a real compact space if every real z-ultrafilter on X is fixed. It is known that for any real z-ultrafilter \mathcal{F} on a space X, $\cap \{cl_{\nu X}(F) \mid F \in \mathcal{F}\} \neq \emptyset([3])$.

Let X be a space and $kX = vX \cup \{p \in \beta X - vX \mid \text{there is a real } z\text{-filter } \mathcal{F} \text{ on } X$ such that $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}\}.$

Let X be a set and $\mathcal{F} \subseteq \mathcal{P}(X)$. For any $A \subseteq X$, let \mathcal{F}_A denote the set $\{F \cap A \mid F \in \mathcal{F}\}$.

Proposition 2.2. Let X be a space. Then we have the following :

(1) $vX \subseteq kX \subseteq \beta X$,

(2) k(vX) = kX, and

(3) kX is realcompact if for any non-empty zero-set Z in kX, $Z \cap X \neq \emptyset$.

Proof. (1) It is trivial.

(2) Let $p \in kX - vX$. Then there is a real z-filter \mathcal{F} on X such that $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}$. Let $\mathcal{F}_v = \{cl_{vX}(F) \mid F \in \mathcal{F}\}$. Note that for any zero-set Z in X, $cl_{vX}(Z)$ is a zero-set in vX and for any sequence (Z_n) in Z(X), $cl_{vX}(\cap \{Z_n \mid n \in N\}) = \cap \{cl_{vX}(Z_n) \mid n \in N\}([3])$. Hence \mathcal{F}_v is a real z-filter \mathcal{F} on vX. Note that $\cap \{cl_{vX}(H) \mid H \in \mathcal{F}_v\} = \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(H) \mid H \in \mathcal{F}_v\} = \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}$. Since v(vX) = vX and $\beta(vX) = \beta X$, $p \in k(vX)$. Hence $kX \subseteq k(vX)$.

Let $q \in k(vX)$ and $q \notin vX$. Since v(vX) = vX, there is a real z-filter \mathcal{G} on vX such that $\cap \{G \mid G \in \mathcal{G}\} = \emptyset$ and $q \in \cap \{cl_{\beta X}(G) \mid G \in \mathcal{G}\}$. Then \mathcal{G}_X is a real z-filter on X and $\cap \{cl_{vX}(H) \mid H \in \mathcal{G}_X\} = \cap \{G \mid G \in \mathcal{G}\} = \emptyset$. Since $q \in \cap \{cl_{\beta X}(H) \mid H \in \mathcal{G}_X\} = \cap \{cl_{\beta X}(G) \mid G \in \mathcal{G}\}, q \in kX$. Hence $k(vX) \subseteq kX$.

(3) Take any real z-ultrafilter \mathcal{F} on kX. By the assumption, for any $F \in \mathcal{F}$,

 $F \cap X \neq \emptyset$ and so \mathcal{F}_X is a z-filter on X. Let Z be a zero-set in X such that for any $F \in \mathcal{F}, Z \cap F \neq \emptyset$. Since $X \subseteq kX \subseteq \beta X$, there is a zero-set B in kX such that $Z = B \cap X$. Then for any $F \in \mathcal{F}, F \cap B \neq \emptyset$. Since \mathcal{F} is a zultrafilter on $kX, B \in \mathcal{F}$ and $B \cap X = Z \in \mathcal{F}_X$. Hence \mathcal{F}_X is a z-ultrafilter on X. Since \mathcal{F}_X is real, $\cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\} = \{q\}$ for some $q \in vX$. Note that $\cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\} = \cap \{cl_{vX}(F \cap vX) \mid F \in \mathcal{F}\}$ and for any $F \in \mathcal{F},$ $cl_{vX}(F \cap vX) \subseteq F$. Hence $q \in \cap \{F \mid F \in \mathcal{F}\}$ and so $\cap \{F \mid F \in \mathcal{F}\} \neq \emptyset$. Thus kXis a realcompact space. \Box

Let S be a subspace of a space X. Then S is called $C(C^*, resp.)$ -embedded in X if for any real-valued (bounded, resp.) continuous function f on S, there is a real-valued (bounded, resp.) continuous function g on X such that $g|_S = f$.

Note that X is a dense C-embedded subspace of Y if and only if $X \subseteq Y \subseteq vX$, equivalently, vX = vY and that a dense subspace X of a space Y is C^{*}-embedded in Y if and only if $\beta X = \beta Y$ ([3]). Using these, we have the following :

Proposition 2.3. Let X be a dense C-embedded subspace of Y. Then kX = kY.

Proof. Since X is a dense C-embedded subspace of Y, vX = vY([3]). Let $p \in kX - vX$. Then there is a real z-filter \mathcal{F} on X such that $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}$. Let $\mathcal{G} = \{G \in Z(Y) \mid G \cap X \in \mathcal{F}\}$. Then $\mathcal{G}_X = \mathcal{F}$ and since vX = vY, \mathcal{G} is a real z-filter on Y.

Let $G \in \mathcal{G}$ and $x \in vX - cl_{vX}(G \cap X)$. Then there is a zero-set neighborhood Zof x in vX such that $G \cap X \cap Z = \emptyset$. Since $X \subseteq Y \subseteq vX$, there is a zero-set H in vX such that $G = H \cap Y$. Since $H \cap Z \cap X = \emptyset$ and $H \cap Z$ is a zero-set in vX, $H \cap Z = \emptyset([5])$. Hence $G \cap Z = \emptyset$ and $x \notin cl_{vX}(G)$. Thus $cl_{vX}(G) \subseteq cl_{vX}(G \cap X)$. Clearly, $cl_{vX}(G \cap X) \subseteq cl_{vX}(G)$ and so $cl_{vX}(G \cap X) = cl_{vX}(G)$.

Since $\cap \{cl_{\nu X}(G \cap X) \mid G \in \mathcal{G}\} = \emptyset$, $\cap \{cl_{\nu Y}(G) \mid G \in \mathcal{G}\} = \emptyset$. Since X is C^{*}embedded in Y, $\beta X = \beta Y$ and $p \in \cap \{cl_{\beta Y}(G) \mid G \in \mathcal{G}\}$. Hence $p \in kY$ and so $kX \subseteq kY$.

Similarly, we have $kY \subseteq kX$.

For any space X, let $k_X : X \longrightarrow kX$ denote the inclusion map. Then (kX, k_X) is an extension of X.

Note that for any continuous map $f: X \longrightarrow Y$, there is a unique continuous map $f^{v}: vX \longrightarrow vY$ such that $f^{v}|_{X} = f$.

Proposition 2.4. Let $f : X \longrightarrow Y$ be a continuous map. Then there is a unique continuous map $g : kX \longrightarrow kY$ such that $g \circ k_X = k_Y \circ f$.

Proof. Note that there is a continuous map $h: \beta X \longrightarrow \beta Y$ such that $h \circ \beta_X = \beta_Y \circ f$ and $h(vX) \subseteq vY$. Let $p \in kX - vX$. Then there is a real z-filter \mathcal{F} on X such that $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}$. Let $\mathcal{G} = \{Z \in Z(Y) \mid h^{-1}(Z) \in \mathcal{F}\}$. Since \mathcal{F} is a real z-filter on X, \mathcal{G} is a real z-filter on Y. Let $G \in \mathcal{G}$. Then $h^{-1}(G) \in \mathcal{F}$. Since $p \in cl_{\beta X}(h^{-1}(G)), h(p) \in h(cl_{\beta X}(h^{-1}(G))) \subseteq$ $cl_{\beta Y}(h(h^{-1}(G))) \subseteq cl_{\beta Y}(G)$. Hence $h(p) \in \cap \{cl_{\beta X}(G) \mid G \in \mathcal{G}\}$ and so $h(p) \in kY$. Let $g: kX \longrightarrow kY$ be the restriction and corestriction of h with respect to kX and kY, respectively. Then $g: kX \longrightarrow kY$ is a continuous map and $g \circ k_X = k_Y \circ f$. Since $k_X: X \longrightarrow kX$ is a dense embedding, such an g is unique. \Box

It is well-known that a space X is Lindelöff if and only if for any real z-filter \mathcal{F} in $X, \cap \{F \mid F \in \mathcal{F}\} \neq \emptyset$.

Proposition 2.5. Let X be a space. Then the following are equivalent :

- (1) vX = kX,
- (2) vX is a Lindelöff space,
- (3) for any free real z-filter \mathcal{F} on X, $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} \neq \emptyset$, and
- (4) for any free real z-filter \mathcal{F} on X, there is a free real z-ultrafilter \mathcal{A} on X such that $\mathcal{F} \subseteq \mathcal{A}$.

Proof. (1) \Rightarrow (2) Take any real z-filter \mathcal{G} on vX. Then \mathcal{G}_X is a real z-filter on X. Suppose that $\cap \{G \cap X \mid G \in \mathcal{G}\} = \emptyset$. Then $\cap \{cl_{\beta X}(G \cap X) \mid G \in \mathcal{G}\} \neq \emptyset$. Pick $p \in \cap \{cl_{\beta X}(G \cap X) \mid G \in \mathcal{G}\}$. Then $p \in kX$ and since kX = vX, $p \in vX$. Hence $p \in (\cap \{cl_{\beta X}(G) \mid G \in \mathcal{G}\}) \cap vX = \cap \{G \mid G \in \mathcal{G}\}$ and so $\cap \{G \mid G \in \mathcal{G}\} \neq \emptyset$. Thus vX is a Lindelöff space.

 $(2) \Rightarrow (3)$ It is trivial.

(3) \Rightarrow (4) Let \mathcal{F} be a free real z-filter on X. By the assumption, $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} \neq \emptyset$. Pick $p \in \cap \{cl_{vX}(F) \mid F \in \mathcal{F}\}$. Let $\mathcal{A}^p = \{A \in Z(X) \mid p \in cl_{vX}(A)\}$. Then \mathcal{A}^p is a free real z-ultrafilter on X and $\mathcal{F} \subseteq \mathcal{A}^p$.

 $(4) \Rightarrow (1) \text{ Let } p \in kX - vX. \text{ Then there is a real } z\text{-filter } \mathcal{F} \text{ on } X \text{ such that} \\ \cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset \text{ and } p \in \cap \{cl_{\beta X}(G \cap X) \mid G \in \mathcal{G}\}. \text{ Since } \mathcal{F} \text{ is free, by } (4), \\ \text{there is a free real } z\text{-ultrafilter } \mathcal{A} \text{ on } X \text{ such that } \mathcal{F} \subseteq \mathcal{A}. \text{ Since } \cap \{cl_{vX}(A) \mid A \in \mathcal{A}\} \neq \emptyset, \cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} \neq \emptyset \text{ and this is a contradiction.}$

By Proposition 2.2. and Proposition 2.5., we have the following :

Corollary 2.6. Let X be a sapce. Then kX = X if and only if X is Lindelöff.

Recall that a space X is called a pseudo-compact space if every real-valued

276

continuous function on X is bounded, equivalently, $vX = \beta X$.

Corollary 2.7. If X is a pseudo-compact space, then $kX = \beta X$.

Let X be a space. The collection $\mathcal{R}(X)$ of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows : For any $A \in \mathcal{R}(X)$ and any $\mathcal{F} \subseteq \mathcal{R}(X)$,

 $\bigvee \mathcal{F} = cl_X(\cup \{F \mid F \in \mathcal{F}\}),$ $\bigwedge \mathcal{F} = cl_X(int_X(\cap \{F \mid F \in \mathcal{F}\})), \text{ and }$ $A' = cl_X(X - A).$

A sublattice of $\mathcal{R}(X)$ is a subset of $\mathcal{R}(X)$ that contains \emptyset , X and is closed under finite joins and finite meets ([7]).

An $\mathcal{R}(X)$ -filter \mathcal{A} is said to have the countable meet property if for any sequence (A_n) in $\mathcal{R}(X)$, $\bigwedge \{A_n \mid n \in N\} \neq \emptyset$.

Let $Z(X)^{\#} = \{ cl_X(int_X(A)) \mid A \in Z(X) \}$. Then $Z(X)^{\#}$ is a sublattice of R(X).

A space X is called a weakly Lindelöff space if for any open cover \mathcal{U} of X, there is a countable subset \mathcal{V} of \mathcal{U} such that $\cup \{V \mid V \in \mathcal{V}\}$ is dense in X.

A space X is a weakly Lindelöff space if and only if for any $Z(X)^{\#}$ -filter \mathcal{A} with the countable meet property, $\cap \{A \mid A \in \mathcal{A}\} \neq \emptyset$ ([4]).

Theorem 2.8. Let X be a space. Then kX is a weakly Lindelöff space.

Proof. Take any $Z(X)^{\#}$ -filter \mathcal{U} on kX with the countable meet property. Let $\mathcal{F} = \{Z \in Z(kX) \mid cl_{kX}(int_{kX}(Z)) \in \mathcal{U}\}$. Clearly, $\emptyset \notin \mathcal{F} \neq \emptyset$. For any $A, B \in \mathcal{F}$, $cl_{kX}(int_{kX}(A \cap B)) = cl_{kX}(int_{kX}(A)) \wedge cl_{kX}(int_{kX}(B)) \in \mathcal{U}$ and hence $A \cap B \in \mathcal{F}$. Thus \mathcal{F} is a z-filter on kX. By the definition of \mathcal{F} , for any $F \in \mathcal{F}, F \cap X \neq \emptyset$. Hence \mathcal{F}_X is also a z-filter on X. Let (A_n) be a sequence in \mathcal{F}_X . For any $n \in N$, there is a $B_n \in \mathcal{F}$ such that $A_n = B_n \cap X$. Since \mathcal{U} has the countable meet property, $cl_{kX}(int_{kX}(\cap\{B_n \mid n \in N\})) \neq \emptyset$ and since X is dense in $kX, cl_{kX}(int_{kX}(\cap\{B_n \mid n \in N\})) \cap X$

 $=cl_{kX}(int_{kX}(\cap\{B_n\cap X\mid n\in N\}))$

 $= cl_{kX}(int_{kX}(\cap \{A_n \mid n \in N\})),$

 $\cap \{A_n \mid n \in N\} \neq \emptyset \text{ and so } \mathcal{F}_X \text{ has the countable intersection property. Note that}$ $\cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\} \neq \emptyset \text{ or } \cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\} = \emptyset.$

Assume that $\cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\} \neq \emptyset$. Pick $x \in \cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\}$. Let $U \in \mathcal{U}$. Suppose that $x \notin U$. Since U is a closed set in kX, there is a zero-set Z in kX such that $x \notin Z$ and $U \subseteq Z$. Then $Z \cap X \in \mathcal{F}_X$ and since $cl_{vX}(Z \cap X) = Z \cap vX$, since $cl_{vX}(Z \cap X) = Z \cap vX$, $x \in Z$. This is a contradiction and so $x \in U$. Hence $x \in \cap \{U \mid U \in \mathcal{U}\}.$

Assume that $\cap \{cl_{vX}(F \cap X) \mid F \in \mathcal{F}\} = \emptyset$. Let $p \in \cap \{cl_{\beta X}(F \cap X) \mid F \in \mathcal{F}\}$. Then $p \in kX$. Let $U \in \mathcal{U}$. Suppose that $p \notin U$. Then there is a zero-set B in βX such that $p \notin B$ and $U \subseteq B$. Since $B \cap X \in \mathcal{F}_X$, $p \in cl_{\beta X}(B \cap X) \subseteq B$. This is a contradiction and so $p \in U$. Hence $p \in \cap \{U \mid U \in \mathcal{U}\}$.

Thus $\cap \{U \mid U \in \mathcal{U}\} \neq \emptyset$ and kX is a weakly Lindelöff space.

A space X is called a P'-space if for any non-empty zero-set Z in X, $int_X(Z) \neq \emptyset$, equivalently, every zero-set in X is a regular closed set in X. Clearly, a space X is a P'-space if and only if vX is a P'-space. If X is a realcompact and locally compact space, then $\beta X - X$ is a P'-space ([6]).

Proposition 2.9. Let X be a P'-space. Then X is a weakly Lindelöff space if and only if X is a Lindelöff space.

Proof. Suppose that X is a weakly Lindelöff space. Let \mathcal{F} be a real z-filter on X. Since X is a P'-space, $Z(X) = Z(X)^{\#}$ and since Z(X) is closed under countable intersections, for any sequence (A_n) in Z(X),

 $\bigwedge \{A_n \mid n \in N\} = cl_X(int_X(\cap \{A_n \mid n \in N\})) = \cap \{A_n \mid n \in N\}.$

Hence \mathcal{F} is a $Z(X)^{\#}$ -filter with the countable meet property. Since X is a weakly Lindelöff space, $\cap \{F \mid F \in \mathcal{F}\} \neq \emptyset$ and hence X is a Lindelöff space.

The converse is trivial.

A space with a dense weakly Lindelöff space is also a weakly Lindelöff space. Using this, Proposition 2.9. and Proposition 2.5., we have the following :

Corollary 2.10. For any P'-space X which is weakly Lindelöff, vX is a Lindelöff space and vX = kX.

References

- J.L. Blasco: Complete bases and Wallman realcompactifications. Proc. Amer. Math. Soc. 75 (1979), 114-118.
- 2. ____: Complete bases in topological spaces II. Studia Sci. Math. Hung. 24 (1989), 447-452.
- L. Gillman & M. Jerison: *Rings of continuous functions*. Van Nostrand, Princeton, New York, (1960).
- 4. C.I. Kim: Almost P-spaces. Commun. Korean Math. Soc. 18 (2003), 695-701.

- 5. J. Porter & R.G. Woods: *Extensions and Absolutes of Hausdorff Spaces*. Springer, Berlin, (1988).
- A.I. Veksler: P'-points, P'-sets, P'-spaces. A new class of order-continuous measures and functionals, Soviet Math. Dokl. 14 (1973), 1445-1450.

^aDepartment of Mathematics, Jeju National University, Jeju 690-756, Korea *Email address*: yunys@jejunu.ac.kr

^bDEPARTMENT OF MATHEMATICS EDUCATION, DANKOOK UNIVERSITY, 126, JUKJEON, YONGIN 448-701, KOREA Email address: kci206@hanmail.net