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GENERALIZED VECTOR MINTY’S LEMMA

Byung-Soo Lee

Abstract. In this paper, the author defines a new generalized (η, δ, α)-pseudomonotone
mapping and considers the equivalence of Stampacchia-type vector variational-like
inequality problems and Minty-type vector variational-like inequality problems for
generalized (η, δ, α)-pseudomonotone mappings in Banach spaces, called the gener-
alized vector Minty’s lemma.

1. Introduction

In the last more than 30 years, variational inequalities for numerical functions,
which were originated from Hartman and Stampacchia [8], have made much devel-
opments in the theory and applications. In particular, Minty’s lemma [2, 6, 7, 10,
14, 15, 18] has been shown to be an important tool in the variational field including
variational inequality problems, obstacle problems, confined plasmas, free-boundary
problems, elasticity problems and stochastic optimal control problems when the op-
erator is monotone and the domain is convex. The classical Minty’s inequality and
Minty’s lemma offered the regularity results of the solution for a generalized non-
homogeneous boundary value problem [2] and, when the operator is a gradient, also
a minimum principle for convex optimization problems [6].

On the other hand, vector variational inequality is closely related to vector opti-
mization problem. Giannessi [7] established the equivalence between a differentiable
convex vector optimization problem and a vector variational inequality. Lee et al.
[15] showed that vector variational inequality can be an efficient tool for studying
vector optimization problems. Moreover, using a vector variational-like inequality,
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Lee et al. [14] proved existence theorems for solutions of nondifferentiable invex op-
timization problems. Recently, Banbagallo [3] obtained the continuity of solutions
to-time-dependent nonlinear variational and quasi-variational inequalities which ex-
press many dynamic equilibrium problems by using Minty’s lemma of the notion of
the Mosco’s convergence.

In 1999, Lee and Lee [11] firstly obtained a vector version of Minty’s lemma
for set-valued mappings in Banach spaces using Nadler’s result [17] and considered
the existences of solutions for Stampacchia-type vector varinational-like inequali-
ties and Minty-type vector variational-like inequalities for set-valued mappings in
Banach spaces under a certain pseudomonotonicity condition and a certain new
hemicontinuity condition.

In 2000, Lee et al. [13] obtained a vector version of Behera and Panda’s general-
ization of Minty’s lemma.

In 2002, Lee et al. [12] introduced (η, θ, δ)-pseudomonotone-type set-valued map-
pings and showed the existence of solutions to Stampacchia-type scalar variational-
type inequality problems and Minty-type scalar variational-type inequality problems
for (η, θ, δ)-pseudomonotone-type hemicontinuous set-valued mappings in nonreflex-
ive Banach spaces.

In 2006, Bai et al. [1] introduced a relaxed η-α-pseudomonotone single-valued
mapping and considered a scalar-type of Minty lemma for relaxed η-α-pseudo-
monotone mappings in reflexive Banach spaces.

In 2008, Chinaie et al. [5] introduced two kinds of η-f -pseudomonotone-type set-
valued mappings and considered two vector versions of Minty’s lemma and obtained
existences of solutions to three kinds of vector variational-like inequalities for two
kinds of η-f -pseudomonotone-type set-valued mappings in normed spaces.

In 2009, Kazmi and Khan [9] considered a generalized system in real Banach
spaces and established some existence theorems for generalized system without
monotone concept but Brouwer’s fixed point theorem. Further they extended the
concept of C-strong pseudomonotonicity for extending Minty’s lemma for a gener-
alized system.

Inspired by the previous work, we defined a new generalized (η, δ, α)-pseudo-
monotone mapping and considered the equivalence of Stampacchia-type vector varia-
tional-like inequality problems and Minty-type vector variational-like inequality prob-
lems for generalized (η, δ, α)-pseudomonotone mappings, called the generalized vec-
tor Minty’s lemma.
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2. Generalized Vector Minty’s lemma

Definition 2.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces and CP (Y )
be the collection of all nonempty compact subsets of Y with the Hausdorff metric
D induced by ‖ · ‖Y .

Let T : X → CP (Y ) be a set-valued mapping with nonempty compact set values.
T is said to be uniformly continuous if for any given positive number ε, there exists
a positive number δ such that for any x, y ∈ X with ‖x − y‖ < δ, D(Tx, Ty) < ε

holds.

Definition 2.2. A mapping f : X → Y from a vector space X to a vector space
Y with a convex cone P in Y is said to be P -convex if f(t · x + (1 − t) · y) ≤P

t · f(x) + (1− t)f(y) for x, y ∈ X and t ∈ [0, 1], where y ≤P x means x− y ∈ P and
y 
intP x means x− y /∈ intP , the interior of P.

Definition 2.3. Let K and C be subsets of real Banach spaces X and Y , respec-
tively. Let η : K ×K → X, δ : K ×K → Y be mappings and F : K × C → 2K ,
G : K → 2C be set-valued mappings. Let P : K → 2Y be a proper closed convex
cone-valued mapping with a nonempty interior cone. A mapping T : K → L(X, Y )
is said to be generalized (η, α, δ)-pseudomonotone with respect to F and G, if for
x ∈ K there exist z ∈ G(x) and h ∈ F (x, z) such that

〈Th, η(y, x)〉+ δ(y, x) 
intP (x) 0 for y ∈ K

implies

〈Tk, η(y, x)〉+ δ(y, x)− α(x, y) 
intP (x) 0

for x, y ∈ K, w ∈ G(y) and k ∈ F (y, w)
where α : K ×K → Y is a mapping such that lim

t→0+

α(x,ty+(1−t)x)
t = 0.

Letting Y = R, δ ≡ 0, P (x) = R+ for x ∈ K and defining G : K → 2C , F :
K × C → 2K by G(x) = {x}, F (x, y) = {x} for x ∈ K and a function β : K → R
by, for each x ∈ K. β(x) = α(y, y + x) for y ∈ K with β(λx) = λpβ(x) for
λ > 0 and p > 1 in Definition 2.3, we have the following definition of the relaxed
η-β-pseudomonotonicity.

Definition 2.4 ([1]). Let η : K × K → X be a mapping and β : K → R be a
function such that β(tx) = tp · β(x) for t > 0, x ∈ K and p > 1.
A mapping T : K → X∗ is said to be relaxed η-β-pseudomonotone if for any
x, y ∈ K, 〈Ty, η(x, y)〉 ≥ 0 implies 〈Tx, η(x, y)〉 ≥ β(x− y).
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Lemma 2.1 ([17]). Let (X, || · ||) be a normed vector space and D be a Hausdorff
metric on the collection C(X) of all closed and bounded subsets of X, induced by a
metric d in terms of d(x, y) = ||x− y||, which is defined by

D(A, B) = max

(
sup
x∈A

inf
y∈B

||x− y||, sup
y∈B

inf
x∈A

||x− y||
)

for A and B in C(X). If A and B are compact sets in X, then for each x ∈ A,
there exists y ∈ B such that

||x− y|| ≤ D(A, B).

Lemma 2.2 ([4]). Let (X, P ) be an ordered Banach space with a closed convex
pointed cone whose interior is nonempty. Then for x, y, z ∈ X, we have the follow-
ing:

if z 
intP x and y ≤P x, then z 
intP y.

Lemma 2.3 ([16]). Let K and C be nonempty subsets of real topological vector
spaces X and Y , respectively and Z a real topological vector space. Let F : K×C →
2Z and G : K → 2C be set-valued mappings. If F and G are upper semi-continuous
and compact-valued, then a set-valued mapping H : K → 2Z defined by H(x) =⋃
z∈G(x)

F (x, z) = F (x,G(x)) is also upper semi-continuous and compact-valued.

The classical Minty’s lemma is stated as following:

Theorem 2.1. Let X be a real reflexive Banach space and K a nonempty closed
convex subset of X with the dual X∗. Let T : K → X∗ be a monotone and
hemicontinuous mapping. Then the following are equivalent:

(a) (Stampacchia-type) there exists an x0 ∈ K such that

〈Tx0, y − x0〉 ≥ 0 for all y ∈ K.

(b) (Minty-type) there exists an x0 ∈ K such that

〈Ty, y − x0〉 ≥ 0 for all y ∈ K.

Now we consider our generalized vector Minty’s lemma.

Theorem 2.2. Let X and Y be Banach spaces and K be a nonempty closed and
convex subset of X. Let η : K × K → X and δ : K × K → Y be mappings.
Let P : K → 2Y be a proper closed convex cone-valued mapping with a nonempty
interior cone and B =

⋂
x∈K

P (x). Let F : K ×C → 2K and G : K → 2C be compact
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set-valued mappings, where C is a given subset of Y . Let H : K → 2L(X,Y ) be a
nonempty set-valued mapping defined by H(x) =

⋃
z∈G(x)

F (x, z) = F (x,G(x)) for

x ∈ K. Let T : K → L(X, Y ) be a mapping and g : K → Y be a mapping defined by
g(x) = 〈Th, η(x, y)〉 for h, x, y ∈ K.
Suppose that the following conditions hold;

(i) η(x, y) + η(y, x) = 0 and δ(x, y) + δ(y, x) = 0 for all x, y ∈ K.
(ii) g is B-convex and δ is B-convex in the first argument.
(iii) F and G are upper semi-continuous and H is D-uniformly continuous.

If T is continuous and generalized (η, δ, α)-pseudomonotone with respect to F

and G, then the following vector variational-like problems are equivalent:

(A) (Stampacchia-type) There exist x0 ∈ K, z0 ∈ G(x0) and k0 ∈ F (x0, z0) such
that

(2.1) 〈Tk0, η(y, x0)〉+ δ(y, x0) 
intP (x0) 0 for y ∈ K.

(B) (Minty-type) There exists x0 ∈ K such that
(2.2)
〈Th, η(y, x0)〉+ δ(y, x0)− α(x0, y) ≤intP (x0) 0 for y ∈ K, z ∈ G(y), h ∈ F (y, z).

Proof. Since the sufficiency is clear from the definition of T , we show the necessity.
Suppose that the vector variational-like inequality problem (2.2) holds. For y ∈ K,
letting yt = ty + (1 − t)x0 for t ∈ (0, 1), we have yt ∈ K. Thus for ht ∈ H(yt) =
F (yt, G(yt)),

(2.3) 〈Tht, η(yt, x0)〉+ δ(yt, x0)− α(x0, yt) 
intP (x0) 0.

From the B-convexity of δ in the first argument and condition (i), we have

δ(yt, x0) ≤P t · δ(y, x0) + (1− t)δ(x0, x0)

= t · δ(y, x0)(2.4)

Also, from the B- convexity of g and condition (i), we have

〈Tht, η(yt, x0)〉 = 〈Tht, η(ty + (1− t)x0, x0)〉
≤P t · 〈Tht, η(y, x0)〉+ (1− t) · 〈Tht, η(x0, x0)〉
= t · 〈Tht, η(y, x0)〉.(2.5)



286 Byung-Soo Lee

By using Lemma 2.2, from (2.3), (2.4) and (2.5),
we have

(2.6) 〈Tht, η(y, x0)〉+ δ(y, x0)− α(x0, yt)
t


intP (x0) 0.

On the other hand, by Lemma 2.3, H(yt) and H(x0) are compact and by Lemma
2.1, for each ht ∈ H(yt), we can choose kt ∈ H(x0) satisfying

‖ht − kt‖ ≤ D(H(yt),H(x0)).

Since the net 〈kt〉 has a convergent subnet 〈kts〉 by the compactness of H(x0), we
assume the subnet 〈kts〉 as a net 〈kt〉 converging to a limit k0 ∈ H(x0) as t → 0+.

Since ‖yt − x0‖ = t · ‖y − x0‖ → 0 as t → 0+, by the D-uniform continuity of H,
D(H(yt),H(x0)) → 0 as t → 0+.

Thus

‖ht − k0‖ ≤ ‖ht − kt‖+ ‖kt − k0‖ ≤ D(H(yt),H(x0)) + ‖kt − k0‖ → 0 as t → 0+.

So by the continuity of T, we have

‖〈Tht, η(y, x0)〉 − 〈Tk0, η(y, x0)〉‖ = ‖〈Tht − Tk0, η(y, x0)〉‖
≤ ‖Tht − Tk0‖‖η(y, x0)‖
→ 0 as t → 0+

Since Y \ (−intP (x0)) is closed and lim
t→0+

α(x0,yt)
t = 0, from (2.6) we have

〈Tk0, η(y, x0)〉+ δ(y, x0) ∈ Y \ (−intP (x0)).

Since k0 ∈ H(x0) =
⋃

z∈G(x0)

F (x0, z) = F (x0, G(x0)), for some z0 ∈ G(x0), k0 ∈
F (x0, z0). Consequently, we have for some x0 ∈ K, z0 ∈ G(x0), and k0 ∈ F (x0, z0),

〈Tk0, η(y, x0)〉+ δ(y, x0) 
intP (x0) 0 for y ∈ K.

¤
We obtain the following scalar Minty’s type lemma as a corollary.

Corollary 2.1 ([1, Theorem 3.1]). Let K be a nonempty closed convex subset of a
real reflexive Banach space X. Let η : K ×K → X be a mapping and α : K → R be
a function with α(tz) = tpα(z) for t > 0, z ∈ K and p > 1. Let T : K → X∗ be an
η−hemicontinuous and relaxed η-α-pseudomonotone mapping.

Assume that

(a) η(x, x) = 0 for all x ∈ K

(b) for any fixed y, z ∈ K, the mapping x 7→ 〈Tz, η(x, y)〉 is convex.
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Then the followings are equivalent :

(i) (Stampacchia-type) there exists a x ∈ K satisfying 〈Tx, η(y, x)〉 ≥ 0 for
y ∈ K,

(ii) (Minty-type) there exists a x ∈ K satisfying 〈Ty, η(y, x)〉 ≥ α(y − x) for
y ∈ K.

Remark. Our result also extends and improves some results in [11, 13].
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