DOI QR코드

DOI QR Code

비재하 가열실험을 통한 이중강관 CFT기둥의 잔존강도 평가연구

A Study on the Evaluation of Residual Strength of Double Concrete Filled Tube Column by Unstressed test

  • 김선희 (서울시립대학교 건축공학과) ;
  • 원용안 (서울시립대학교 건축공학과) ;
  • 최성모 (서울시립대학교 건축학부)
  • 투고 : 2011.06.23
  • 심사 : 2012.02.06
  • 발행 : 2012.02.27

초록

콘크리트 충전강관 기둥은 내부의 콘크리트에 의해 축열효과로 인해 철골기둥에 비해 내화성능이 우수하며, 기둥 단면 내 철근 및 강관을 보강하여 구조적내력 및 내화성능 향상연구가 이루어져 오고 있다. 실제로 보강된 CFT기둥은 고축력을 요구하는 기둥부재로 사용 빈도 수가 증가되고 있는 추세이다. 이러한 상황에서 CFT기둥을 사용한 건축물에 화재가 발생하여 손상을 입게 되었을 경우 성능 저하정도를 정밀하게 측정할 수 있는 기법이 필요하다. 본 연구에서는 화재 발생시 CFT기둥에 대한 내부 온도 분포를 평가 하고, 단면내부의 온도분포에 따라 내부 충전콘크리트와 보강재의 내력 저하 정도를 파악하여 CFT기둥의 전체적인 잔존강도를 평가하고자 한다.

The concrete-filled tubular square column is superior to steel frame column in terms of fire resistance because of the thermal storage provided by the concrete. Studies have been conducted on CFT column reinforcement with steel bars or with the use of an internal tube to improve its structural load capacity and fire resistance. In fact, reinforced CFT columns have been increasingly used to deal with high axial force. The functional deterioration of columns due to fire damage needs to be measured precisely. In this study, the temperature distribution inside the columns in case of a fire was evaluated and the degree of deterioration in the load capacity of the concrete and reinforcing members associated with temperature distribution was identified in order to evaluate the overall residual strength of the columns.

키워드

참고문헌

  1. 김규용, 이형준, 이태규, 김영선, 강선종(2009) 비재하 가열에 의한 무내화피복 CFT기둥의 잔존내력 예측에 관한 연구, 한국화재소방학회 논문집, 한국화재소방학회, 제23권, 제3호, pp. 31-39
  2. 김흥열, 서치호, 신현준(2005) 고온 영역에서 강도영역별 콘크리트의 역학적 특성에 관한 실험적 연구, 대한건축학회 논문집, 대한건축학회, 제21권, 제7호, pp. 55-66
  3. 대한건축학회(2009) 국토해양부고시 건축구조기준 및 해설, 기문당.
  4. AIJ (1997) Recommendations for design and construction of concrete filled steel tubular structures, Architectural Institute of Japan, Japan.
  5. AISC (1999) Load and Resistance Factor Design (LRFD). Specification for structural steel buildings, American Institute of Steel Construction, Inc.
  6. AISC (2005) Load and Resistance Factor Design (LRFD). Specification for structural steel buildings, American Institute of Steel Construction, Inc.
  7. BS 5950-8 (1990) Code of practice for fire resistant design, British Standards Institution.
  8. Eurocode 4 (1994) Design of composite steel and concrete structures. Part 1.1: General rules and rules for buildings (together with United Kingdom National Application Document), DD ENV 1994-1-1.
  9. Han, L.H. and Huo, J.S. (2003) Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard, Journal of Structural Engineering, Vol. 129, No. 1, pp. 68-78. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(68)
  10. Han, L.H., Yang, H., and Cheng, S.L. (2002) Residual strength of concrete filled RHS stub columns after exposure to high temperatures, Advances in Structural Engineering, Vol. 5, No. 2, pp. 123-134. https://doi.org/10.1260/1369433021502614
  11. Hui, lu., Han, L.H., and Zhao, X.L. (2009) Fire Performance of self consolidating concrete filled double skin steel tubular columns: Experiments, ELSEVIER, Fire Safety Journal, Vol. 45, No. 2, pp. 106-115.
  12. ISO (1975) Fire Resistance Test-Elements of Building Construction, ISO 834.
  13. Kodur, V.K.R. and Lie, T.T. (1996) A Computer Program to Calculate the Fire Resistance of Rectangular Reinforced Concrete Columns, Third Canadian Conference on Computing in Civil and Building Engineering, Ottawa, Canada, pp. 11-20.
  14. Lie, T.T. (1980) New Facility to Determine Fire Resistance of Columns. Canadian Journal of Civil Engineering, Vol. 7, No. 3, pp. 551-558. https://doi.org/10.1139/l80-063
  15. Yang, Y.F. and Han, L.H. (2005) Fire resistance of concrete-filled double skin steel tubular columns, Proc. the Fourth International Conference on Advances in Steel Structures, Shanghai, China. pp. 1047-1052.

피인용 문헌

  1. Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading vol.26, pp.4, 2014, https://doi.org/10.7781/kjoss.2014.26.4.323
  2. Prediction of Temperature Distribution to Evaluate Axial Strength of Unprotected Concrete-filled Steel Tubular Columns under Fire vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.587
  3. An Experimental Study of Improving Fire Performance with Steel-fibers for Internally Anchored Square Composite Columns vol.26, pp.6, 2014, https://doi.org/10.7781/kjoss.2014.26.6.499
  4. Fire Resistance of U-shape Hybrid Composite Beam vol.25, pp.4, 2013, https://doi.org/10.7781/kjoss.2013.25.4.379
  5. 재하 및 비재하 가열 실험을 통한 피복된 합성기둥의 내화성능 평가 vol.33, pp.3, 2017, https://doi.org/10.5659/jaik_sc.2017.33.3.13
  6. Experimental Study on the Fire Resistance of Steel-Reinforced Concrete Column in Fire According to Load Ratio vol.31, pp.6, 2012, https://doi.org/10.7781/kjoss.2019.31.6.459
  7. 화재시 축력비에 따른 매입형 합성기둥의 내화성능에 대한 해석적 연구 vol.24, pp.1, 2012, https://doi.org/10.11112/jksmi.2020.24.1.97
  8. Prediction of Temperature Distribution and Strength of Unprotected Mega CFT Columns Exposed to Standard Fire vol.33, pp.1, 2012, https://doi.org/10.7781/kjoss.2021.33.1.001