DOI QR코드

DOI QR Code

Experimental study on a Cantilever Type Metallic Damper for Seismic Retrofit of Building Structures

건물의 내진보강을 위한 캔틸레버타입 강재댐퍼의 실험

  • 안태상 (DRB동일 면진제진기술연구소) ;
  • 김영주 (DRB동일 면진제진기술연구소) ;
  • 박진화 (DRB동일 면진제진기술연구소) ;
  • 김형근 (SH공사 도시연구소) ;
  • 장동운 (쌍용건설 건축기술부) ;
  • 오상훈 (부산대학교 건축학부)
  • Received : 2012.01.31
  • Accepted : 2012.04.02
  • Published : 2012.04.27

Abstract

The use of seismic energy-dissipative devices for passive control is increasing exponentially in the recent years for both new and existing buildings. Use of these devices started in and has been somewhat limited to developed countries. One of the current challenges is to promote the use of seismic dampers in earthquake-prone developing countries by lowering the cost of the devices. This paper proposed a new type of seismic damper based on yielding of a cantilever type metallic element for seismic retrofit of existing and new building structures. The hysteretic behavior and energy dissipation capacity of the proposed damper was investigated using component tests under cyclic loads. The experimental results indicated that the damping device had stable restoring force characteristics and a high energy dissipation capacity. Based on these results, a simple hysteretic model for predicting the load-displacement curve of the seismic damper was proposed.

최근에 신축 건물이나 기존 건물의 내진보강을 위해서 수동제진장치의 일종인 에너지소산형 제진장치의 사용이 매우 증가하고 있다. 제진장치는 선진국을 중심으로 개발되어 왔고 제한적으로 사용해 오고 있었지만, 최근에는 다소 저렴한 장치개발을 통하여 강진지역의 개발도상국으로도 그 사용이 확대되고 있다. 본 연구는 기존 또는 신축 건물의 내진보강을 위한 캔틸레버타입 강재댐퍼를 개발하고 제안하였다. 댐퍼에 대한 반복가력 실험을 바탕으로 이력거동 및 에너지소산능력을 조사하였다. 실험결과는 제진장치가 안정된 이력특성을 나타내고 있으며 큰 에너지소산능력을 갖고 있음을 보여준다. 실험결과를 바탕으로 댐퍼에 대한 간단한 하중-변위 이력모델을 제안하였다.

Keywords

References

  1. 소방방재청(2011) 기존 저층 건축물 내진성능 확보기술 개발, NEMA-자연-2010-32, 자연저감기술개발사업단.
  2. 오상훈, 김창록, 금동성, 이정복, 오형창(2006) Hi ! Remodeling, 구미서관.
  3. AIK (2009) 건축구조기준 및 해설(KBC 2009), 대한건축학회.
  4. ASCE STANDARD (2007) Seismic Rehabilitation of Existing Buildings(ASCE 41-06), ASCE.
  5. ASCE STANDARD (2010) Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), ASCE.
  6. Benavent-Climent, A., Oh, S.H., and Akiyama, H. (1998) Ultimate energy absorption capacity of slit-type steel plates subjected to shear deformations, J. of Structural and Construction Engineering, Vol.503, pp.139-147.
  7. Benavent-Climent, A., Morillas, L., and Vico, J.M. (2010) A study on using wide-flange section web under out-of-plane flexure for passive energy dissipation, Earthquake Engineering and Structural Dynamics, Vol.40, Issue 5, pp.473-490.
  8. Bergman, D.M. and Goel, S.C. (1987) Evaluation of cyclic testing of steel plate devices for added damping and stiffness, Report UMCE87-10, University of Michigan, Ann Arbor, MI.
  9. Black, C.J., Makris, N., and Aiken, I. (2004) Component testing, seismic evaluation and characterization of buckling-restrained braces, J. of Structural Engineering, Vol.130, No.6, pp.880-894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880)
  10. CEB (1997) Fastenings for Seismic Retrofitting, Comite Euro-International Du Beton, Thomas Telford, London.
  11. Constantinou, M.C. and Symans, M.D. (1993) Seismic response of buildings with supplemental damping, J. of Structural Design of Tall Buildings, Vol.2, pp.77-92. https://doi.org/10.1002/tal.4320020202
  12. FEMA (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, Federal Emergency Management Agency, Washington, D.C.
  13. Kato, B. and Akiyama, H., (1973) Predictable properties of material under incremental cyclic loading, IABSE, Preliminary publication, Lisbon.
  14. Kobori, T., Minura, Y., Fukusawa, E., Yamada, T., Arita, T., Takenake, Y., and Akiba, I. (1992) Development and application of hysteretic steel dampers, Proc. 11th World Conference on Earthquake Engineering, Madrid, Spain, pp.2341-2346.
  15. Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., Konomi, S., Akazawa, T., and Saburi, K., (1994) Energy dissipation behaviors of shear panels made of low yield steel, Earthquake Engineering and Structural Dynamics, Vol.23, pp.1299-1313 https://doi.org/10.1002/eqe.4290231203
  16. Newman, A. (2001) Structural Renovation of Buildings, McGraw-Hill, New York, NY.
  17. Soong, T.T. and Dargush, G.F. (1997) Passive energy dissipation systems in structural engineering, John Wiley & Sons.
  18. Sugano (1989) Study of the seismic behavior of retrofitting reinforced concrete buildings, Proc. ASCE '89 Structures Congress, San Francisco, CA.
  19. Tsai, K., Chen, H., Hong, C., and Su, Y. (1993) Design of steel triangular plate energy absorbers for seismic-resistant construction, Earthquake Spectra, Vol. 9, No. 3, pp.505-528. https://doi.org/10.1193/1.1585727

Cited by

  1. Evaluation on the Structural Performance of Hybrid Damper Using High-damping Rubber and Steel vol.16, pp.3, 2016, https://doi.org/10.9712/KASS.2016.16.3.099
  2. Cyclic Test of Shear Wall Damping Systems vol.25, pp.1, 2013, https://doi.org/10.7781/kjoss.2013.25.1.081
  3. Cyclic loading test of wall damping system with steel dampers vol.19, pp.8, 2016, https://doi.org/10.1177/1369433216642068
  4. Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers vol.23, pp.1, 2019, https://doi.org/10.5000/EESK.2019.23.1.001
  5. 강재 플레이트 댐퍼의 구조성능에 관한 연구 vol.29, pp.2, 2012, https://doi.org/10.7781/kjoss.2017.29.2.159
  6. 연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성 vol.22, pp.3, 2018, https://doi.org/10.11112/jksmi.2018.22.3.021
  7. Introducing and numerical study of a new brace-type slit damper vol.27, pp.None, 2012, https://doi.org/10.1016/j.istruc.2020.06.019
  8. A Study on the Hysteretic Characteristics of Hybrid Steel Damper System Using the High Ductile Low-Yield-Point Steel vol.33, pp.4, 2012, https://doi.org/10.7781/kjoss.2021.33.4.203
  9. Dynamic Test and Nonlinear Analysis of Reinforced Concrete Frame Retrofitted by Diagonal Brace Type Friction Damper vol.33, pp.4, 2021, https://doi.org/10.7781/kjoss.2021.33.4.215