DOI QR코드

DOI QR Code

Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding

플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향

  • 최원정 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터) ;
  • 유세훈 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터) ;
  • 이효수 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터) ;
  • 김목순 (인하대학교 금속공학과) ;
  • 김준기 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터)
  • Received : 2012.06.12
  • Accepted : 2012.08.06
  • Published : 2012.09.27

Abstract

Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.

Keywords

References

  1. L. K. Teh, E. Anto, C. C. Wong, S. G. Mhaisalkar, E. H. Wong, P. S. Teo and Z. Chen, Thin Solid Films, 462-463, 446 (2004). https://doi.org/10.1016/j.tsf.2004.05.077
  2. P. S. Ho, G. Wang, M. Ding, J. -H. Zhao and X. Dai, Microelectron. Reliab., 44, 719 (2004). https://doi.org/10.1016/j.microrel.2004.01.007
  3. D. Lu and C. P. Wong, Materials for Advanced Packaging, p.719, Springer, NY, USA (2008).
  4. K. E. Min, J. S. Lee, S. Yoo, M. S. Kim and J. K. Kim, Kor. J. Mater. Res., 20(12), 681 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.12.681
  5. S. J. Lee, S. H. Yoo, C. W. Lee, J. H. Lee and J. K. Kim, J. Microelectron. Packag. Soc., 16(3), 25 (2009) (in Korean).
  6. E. M. Petrie, Epoxy Adhesive Formulations, p.99, McGraw-Hill, USA (2006).
  7. J. Rieger, Polymer Test., 20, 199 (2001). https://doi.org/10.1016/S0142-9418(00)00023-4
  8. I. Ogura, Electronics Application of Epoxy resin, p.23, Information Technology Association, Japan (2005) (in Japanese).
  9. M. S. Kim, H. Y. Kim, S. H. Yoo, J. H. Kim and J. K. Kim, J. Kor. Welding Soc., 29(4), 54 (2011) (in Korean). https://doi.org/10.5781/KWJS.2011.29.4.416

Cited by

  1. Ion Migration Failure Mechanism for Organic PCB under Biased HAST vol.22, pp.1, 2015, https://doi.org/10.6117/kmeps.2015.22.1.043