DOI QR코드

DOI QR Code

Influence of Raito of TGA(thioglycolic acid) on CdTe QDs Solution Stability for a Period of Time

CdTe QDs 용액 안정성의 장시간 유지지속을 위한 TGA(thioglycolic acid)의 첨가효과

  • Kim, Jong-Hwan (Division of Materials Science and Engineering, Korea Busan National Univ.) ;
  • Kim, Tae-Hee (Division of Materials Science and Engineering, Korea Busan National Univ.) ;
  • Gwoo, Dong-Gun (Division of Materials Science and Engineering, Korea Busan National Univ.) ;
  • Kee, Kyung-Bum (Division of Materials Science and Engineering, Korea Busan National Univ.) ;
  • Choi, Won-Gyu (Division of Materials Science and Engineering, Korea Busan National Univ.) ;
  • Han, Kung-Seok (Division of Materials Science and Engineering, Korea Busan National Univ.) ;
  • Ryu, Bong-Ki (Division of Materials Science and Engineering, Korea Busan National Univ.)
  • Received : 2012.05.16
  • Accepted : 2012.08.13
  • Published : 2012.09.27

Abstract

This paper focuses on the after synthesis of CdTe quantum dots(QDs) in aqueous solution. CdTe nanoparticles were prepared in aqueous solution using mercaptocarboxylic acid or thioglycolic acid(TGA) as stabilizing agents. QDs emit light smaller than the nano size. The contents of the mercaptocarboxylic acid, and a kind of raw material, were revealed for a period of time. We succeeded in synthesizing a very high quality QDs solution; we discussed how to make QDs better and to keep them stabilized. TGA is known as one of the best stabilizing agents. Many papers have mentioned that TGA is a good stabilizing agent. We dramatically confirmed the state of QDs after the experiments. The QDs solution can be influenced by several factors. Different content of TGA can influence the stability of the CdTe solution. Most papers deal with the synthesis of CdTe, so we decided to discuss the after synthesis process for the stability of the CdTe solution.

Keywords

References

  1. J. Tian, R. Liu, Y. Zhao, Q. Xu and S. Zhao, J. Colloid Interface Sci., 336(2), 504 (2009). https://doi.org/10.1016/j.jcis.2009.04.064
  2. S. Sirohi, V. Kumar and T. P. Sharma, Opt. Mater., 12(1), 121 (1999). https://doi.org/10.1016/S0925-3467(98)00053-6
  3. V. Kumar, J. K. Gaur, M. K. Sharma and T. P. Sharma, Chalcogenide Lett., 5(8), 171 (2008).
  4. Y. -F. Liu and J. -S. Yu, J. Colloid Interface Sci., 351(1), 1 (2010). https://doi.org/10.1016/j.jcis.2010.07.047
  5. S. Wang, Y. Li, J. Bai, Q. Yang, Y. Song and C. Zhang, Bull. Mater. Sci., 32(5), 487 (2009). https://doi.org/10.1007/s12034-009-0072-2
  6. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, J. Phys. Chem. B, 106(29), 7177 (2002). https://doi.org/10.1021/jp025541k
  7. M. Idowu and T. Nyokong, Polyhedron, 28(5), 891 (2009). https://doi.org/10.1016/j.poly.2008.12.042
  8. Z. Li, Y. Wang, G. Zhang, W. Xu and Y. Han, J. Lumin., 130(6), 995 (2010). https://doi.org/10.1016/j.jlumin.2010.01.013
  9. H. Zhang, Z. Zhou, B. Yang and M. Gao, J. Phys. Chem., 107(1), 8 (2003). https://doi.org/10.1021/jp025910c
  10. A. L. Rogach, A. Eychmuller, A. Kornowski and H. Weller, Macromol. Symp., 136(1), 87 (1998). https://doi.org/10.1002/masy.19981360112
  11. H. Bao, N. Hao, Y. Yang and D. Zhao, Nano Res., 3, 481 (2010). https://doi.org/10.1007/s12274-010-0008-6
  12. B. Qi, D. Kim, D. L. Williamson and J. U. Trefny, J. Electrochem. Soc., 143(2), 517 (1996). https://doi.org/10.1149/1.1836474
  13. R. Sathyamoorthy, S. K. Narayandass and D. Mangalaraj, Sol. Energ. Mater. Sol. Cell., 76(3), 339 (2003). https://doi.org/10.1016/S0927-0248(02)00286-6
  14. M. S. Abd El-Sadek, J. R. Kumar and S. M. Babu, Int. J. Nanoparticles, 2(1-6), 20 (2009). https://doi.org/10.1504/IJNP.2009.028730