DOI QR코드

DOI QR Code

Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell

고체산화물 연료전지의 공기극으로서 La1-xSrxMnO3 계의 합성 및 특성

  • Lee, You-Kee (Division of Green Energy Engineering, Uiduk Unversity) ;
  • Lee, Young-Ki (Division of Green Energy Engineering, Uiduk Unversity)
  • 이유기 (위덕대학교 그린에너지공학부) ;
  • 이영기 (위덕대학교 그린에너지공학부)
  • Received : 2012.07.02
  • Accepted : 2012.08.14
  • Published : 2012.09.27

Abstract

$La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.

Keywords

References

  1. S. de Souza, S. J. Visco and L. C. De Jonghe, Solid State Ionics, 98, 57 (1997). https://doi.org/10.1016/S0167-2738(96)00525-5
  2. Y. L. Liu, K. Thyden, M. Chen and A. Hagen, Solid State Ionics, 206, 97 (2012). https://doi.org/10.1016/j.ssi.2011.10.020
  3. T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky and H. U. Anderson, Solid State Ionics, 177, 2071 (2006). https://doi.org/10.1016/j.ssi.2005.12.016
  4. V. A. C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold and F. Tietz, J. Power Sources, 141, 216 (2005). https://doi.org/10.1016/j.jpowsour.2004.09.016
  5. H. S. Song, W. H. Kim, S. H. Hyun, J. Moon, J. Kim and H. -W. Lee, J. Power Sources, 167, 258 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.095
  6. M. Juhl, S. Primdahl, C. Manon and M. Mogensen, J. Power Sources, 61, 173 (1996). https://doi.org/10.1016/S0378-7753(96)02361-0
  7. K. Sasaki, J. -P. Wurth, R. Gschwend, M. Gödickemeier and L. J. Gauckler, J. Electrochem. Soc., 143(2), 530 (1996). https://doi.org/10.1149/1.1836476
  8. Y. K. Lee, Kor. J. Mater. Res., 11(4), 283 (2001) (in Korean).
  9. S. Wang, Y. Jiang, Y. Zhang, J. Yan and W. Li, J. Electrochem. Soc., 145(6), 1932 (1998). https://doi.org/10.1149/1.1838578
  10. J. X. Wang, Y. K. Tao, J. Shao and W. G. Wang, J. Power Sources, 186, 344 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.116
  11. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas and G. J. Exarhos, Mater. Lett., 10(1,2), 6 (1990). https://doi.org/10.1016/0167-577X(90)90003-5
  12. G. V. S. Rao, B. M. Wanklyn and C. N. R. Rao, J. Phys. Chem. Solid., 32, 345 (1971). https://doi.org/10.1016/0022-3697(71)90019-9
  13. S. T. Aruna, M. Muthuraman and K. C. Patil, J. Mater. Chem., 7(12), 2499 (1997). https://doi.org/10.1039/a703901h
  14. S. S. Manoharan and K. C. Patil, J. Solid State Chem., 102, 267 (1993). https://doi.org/10.1006/jssc.1993.1031
  15. J. H. Choi, J. H. Jang, J. H. Ryu and S. M. Oh, J. Power Sources, 87, 92 (2000). https://doi.org/10.1016/S0378-7753(99)00365-1
  16. T. Ioroi, T. Hara, Y. Uchimoto, Z. Ogumi and Z. Takehara, J. Electrochem. Soc., 145(6), 1999 (1998). https://doi.org/10.1149/1.1838589
  17. E. Siebert, A. Hammouche and M. Kleitz, Electrochim. Acta, 40(11), 1741 (1995). https://doi.org/10.1016/0013-4686(94)00361-4
  18. H. Abe, M. Naito, K. Sato and T. Kinoshita, Trans. JWRI, 39(1), 65 (2010).
  19. H. Fukunaga, M. Ihara, K. Sakaki and K. Yamada, Solid State Ionics, 86-88, 1179 (1996). https://doi.org/10.1016/0167-2738(96)00284-6