DOI QR코드

DOI QR Code

Effect of PVP(polyvinylpyrrolidone) on the Ag Nano Ink Property for Reverse Offset Printing

PVP(polyvinylpyrrolidone)가 리버스 오프셋용 은 나노 잉크 물성에 미치는 영향

  • Han, Hyun-Suk (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM)) ;
  • Kwak, Sun-Woo (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM)) ;
  • Kim, Bong-Min (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM)) ;
  • Lee, Taik-Min (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM)) ;
  • Kim, Sang-Ho (Department of Chemistry, Kongju National University) ;
  • Kim, In-Young (Department of Printed Electronics, Korea Institute of Machinery and Materials (KIMM))
  • Received : 2012.07.06
  • Accepted : 2012.08.15
  • Published : 2012.09.27

Abstract

Among the various roll-to-roll printing technologies such as gravure, gravure-offset, and reverse offset printing, reverse offset printing has the advantage of fine patterning, with less than 5 ${\mu}m$ line width. However, it involves complex processes, consisting of 1) the coating process, 2) the off process, 3) the patterning process, and 4) the set process of the ink. Each process demands various ink properties, including viscosity, surface tension, stickiness, and adhesion with substrate or clich$\acute{e}$; these properties are critical factors for the printing quality of fine patterning. In this study, Ag nano ink was developed for reverse offset printing and the effect of polyvinylpyrrolidone(PVP), used as a capping agent of Ag nano particles, on the printing quality was investigated. Ag nano particles with a diameter of ~60 nm were synthesized using the conventional polyol synthesis process. Ethanol and ethylene glycol monopropyl ether(EGPE) were used together as the main solvent in order to control the drying and absorption of the solvents during the printing process. The rheological behavior, especially ink adhesion and stickiness, was controlled with washing processes that have an effect on the offset process and that played a critical role in the fine patterning. The electrical and thermal behaviors were analyzed according to the content of PVP in the Ag ink. Finally, an Ag mesh pattern with a line width of 10 ${\mu}m$ was printed using reverse offset printing; this printing showed an electrical resistivity of 36 ${\mu}{\Omega}{\cdot}cm$ after sintering at $200^{\circ}C$.

Keywords

References

  1. Y. Li, Y. Wu and B. S. Ong, J. Am. Chem. Soc., 127(10), 3266 (2005). https://doi.org/10.1021/ja043425k
  2. H. W. Kang, H. J. Sung, T. M. Lee, D. S. Kim and C. J. Kim, J. Micromech. Microeng., 19, 015025 (2009). https://doi.org/10.1088/0960-1317/19/1/015025
  3. F. C Krebs, T. Tromholt and M. Jørgensen, Nanoscale, 2, 873 (2010). https://doi.org/10.1039/b9nr00430k
  4. M. Pudas, N. Halonen, P. Granat and J. Vahakangas, Progr. Org. Coating., 54, 310 (2005). https://doi.org/10.1016/j.porgcoat.2005.07.008
  5. F. C. Krebs, Sol. Energ. Mater. Sol. Cell., 93, 394 (2009). https://doi.org/10.1016/j.solmat.2008.10.004
  6. S. W. Cho, K. -H. Choi, J. H. Bae, J. -M. Moon, J. -A Jeong, S. W. Jeong, N. -J. Park and H. -K Kim, Kor. J. Mater. Res., 18(1), 32 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.1.032
  7. S. Jeong, K. Woo, D. Kim, S. Lim, J. S Kim, H. Shin, Y. Xia and J. Moon, Adv. Funct. Mater., 18, 679 (2008). https://doi.org/10.1002/adfm.200700902
  8. T. H. J. V. Osch, J. Perelaer, A. W. M. de Laat and U. S. Schubert, Adv. Mater., 20, 343 (2008). https://doi.org/10.1002/adma.200701876
  9. M. Grouchko, A. Kamyshny and S. Magdassi, J. Mater Chem., 19, 3057 (2009). https://doi.org/10.1039/b821327e
  10. S. Magdassi, M. Grouchko, O. Berezin and A. Kamyshny, ACS Nano., 4, 1943 (2010). https://doi.org/10.1021/nn901868t
  11. D. Kim, S. Jeong, B. K. Park and J. Moon, Appl. Phys. Lett., 89, 264101 (2006). https://doi.org/10.1063/1.2424671
  12. M. Yamada, M. Maesaka, M. Kurihara, M. Sakamoto and M. Miyake, Chem. Comm., 2005, 4851 (2005).
  13. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, Science, 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  14. J. H. Kim, T. A. Germer, G. W. Mulholland and S. H. Ehrman, Adv. Mater., 14, 518 (2002). https://doi.org/10.1002/1521-4095(20020404)14:7<518::AID-ADMA518>3.0.CO;2-P
  15. Y. Sun and Y. Xia, Adv. Mater., 14, 833 (2002). https://doi.org/10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
  16. B. Wiley, Y. Sun and Y. Xia, Langmuir, 21, 8077 (2005). https://doi.org/10.1021/la050887i
  17. I. Pastoriza-Santos and L. M. Liz-Marzan, Pure Appl. Chem., 72, 83 (2000). https://doi.org/10.1351/pac200072010083
  18. N. R. Jana, L. Gearheart and C. J. Murphy, Chem. Comm., 2001, 617 (2001).
  19. C. J. Murphy and N. R. Jana, Adv. Mater., 14, 80 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#
  20. S. Chen and D. L. Carroll, Nano Lett., 2, 1003 (2002). https://doi.org/10.1021/nl025674h
  21. Y. H. Kim, J. Korean Ind. Eng. Chem., 14, 487 (2003) (in Korean).
  22. J. Y. Jang, Y. K. Jhon, I. W. Cheong and J. H. Kim, Colloid. Surface. Physicochem. Eng. Aspect., 196, 135 (2002). https://doi.org/10.1016/S0927-7757(01)00857-3
  23. Z. Czech, Polymer Int., 52, 347 (2003). https://doi.org/10.1002/pi.1151
  24. P. Y. Silvert, H. U. Ronaldo, T. E. Kamar, J. Mater. Chem., 7(2), 293 (1997). https://doi.org/10.1039/a605347e
  25. T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang and R. Du, Colloid. Surface. Physicochem. Eng. Aspect, 366, 197 (2010). https://doi.org/10.1016/j.colsurfa.2010.06.005
  26. J. H. Moon, G. R. Yi, S. Y. Lee, J. H. So, Y. S. Kim, Y. K. Yoon, Y. S. Cho and S. M. Yang, Korean Chem. Eng. Res., 46, 647 (2008).
  27. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. LI and C. P. Wong, J. Electron. Mater., 34, 168 (2005). https://doi.org/10.1007/s11664-005-0229-8

Cited by

  1. Ink for Gravure Offset Printing vol.52, pp.5S1, 2013, https://doi.org/10.7567/JJAP.52.05DB17