DOI QR코드

DOI QR Code

Finite Element Simulation and Experimental Study on the Electrochemical Etching Process for Fabrication of Micro Metal Mold

미세금형 가공을 위한 전기화학식각 공정의 유한요소 해석 및 실험결과 비교

  • Ryu, Heon-Yul (Department of Bionano Technology, Hanyang University) ;
  • Im, Hyeon-Seung (Advanced Convergent Technology R&D Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Cho, Si-Hyeong (Department of Bionano Technology, Hanyang University) ;
  • Hwang, Byeong-Jun (Advanced Convergent Technology R&D Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Sung-Ho (Advanced Convergent Technology R&D Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Jin-Goo (Department of Bionano Technology, Hanyang University)
  • 류헌열 (한양대학교 바이오나노학과) ;
  • 임현승 (한국생산기술연구원 미래융합 연구그룹) ;
  • 조시형 (한양대학교 바이오나노학과) ;
  • 황병준 (한국생산기술연구원 미래융합 연구그룹) ;
  • 이성호 (한국생산기술연구원 미래융합 연구그룹) ;
  • 박진구 (한양대학교 바이오나노학과)
  • Received : 2012.07.10
  • Accepted : 2012.08.22
  • Published : 2012.09.27

Abstract

To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of $H_2SO_4$, $H_3PO_4$, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.

Keywords

References

  1. L. Yu, C. G. Koh, L. J. Lee, K. W. Koelling and M. J. Madou, Polymer Eng. Sci., 42(5), 871 (2002). https://doi.org/10.1002/pen.10998
  2. S. J. Oh and S. B. Kang, Mater. Sci. Eng., 343(1-2), 107 (2003). https://doi.org/10.1016/S0921-5093(02)00324-6
  3. X. Cheng and L. J. Guo, Microelectronic Eng., 71(3-4), 288 (2004). https://doi.org/10.1016/j.mee.2004.01.042
  4. I. Simon, N. B rsan, M. Bauer and U. Weimar, Sensor. Actuator. B Chem., 73(1), 1 (2001). https://doi.org/10.1016/S0925-4005(00)00639-0
  5. K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu, R. Resnick and A. De Silva, CIRP Annals Manuf. Technol., 55(2), 643 (2006). https://doi.org/10.1016/j.cirp.2006.10.002
  6. P. P. Shiu, G. K. Knopf, M. Ostojic and S. Nikumb, J. Micromech. Microeng., 18(2), 025012 (2008). https://doi.org/10.1088/0960-1317/18/2/025012
  7. C. Liu, Foundations of MEMS, p.1-27, Pearson Education International, NJ, USA (2006).
  8. K. H. Ho and S. T. Newman, Int. J. Mach. Tool. Manufact., 43(13), 1287 (2003). https://doi.org/10.1016/S0890-6955(03)00162-7
  9. K. P. Rajurkar, D. Zhu, J. A. McGeough, J. Kozak and A. De Silva, CIRP Annals Manuf. Technol., 48(2), 567 (1999). https://doi.org/10.1016/S0007-8506(07)63235-1
  10. M. D. Shirk and P. A. Molian, J. Laser Appl., 10(1), 18 (1998). https://doi.org/10.2351/1.521827
  11. S. J. Ahn, D. W. Kim, H. S. Kim, Y. J. Kim and Y. S. Lee, Kor. J. Mater. Res., 11(9), 792 (2001) (in Korean).
  12. M. -S. Cho, H. -W. Lim, C. S. Lee, B. -K. Cho and J. -G. Park, Jpn. J. Appl. Phys., 47(6), 5217 (2008). https://doi.org/10.1143/JJAP.47.5217
  13. C. Madore, O. Piotrowski and D. Landolt, J. Electrochem. Soc., 146(7), 2526 (1999). https://doi.org/10.1149/1.1391966
  14. M. -S. Cho, S. -H. Cho, N. -G. Cha, H. -W. Lim, J. -G. Park and J. -S. Jo, Electronic Mater. Lett., 3(2), 93 (2007).