DOI QR코드

DOI QR Code

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide

당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구

  • Cho, Han-Jin (Dept. of Food Science and Nutrition, Hallym University) ;
  • Shim, Jae-Hoon (Dept. of Food Science and Nutrition, Hallym University) ;
  • So, Hong-Seob (Vestibulocochlear Research Center & Dept. of Microbiology, Wonkwang University School of Medicine) ;
  • YoonPark, Jung-Han (Dept. of Food Science and Nutrition, Hallym University)
  • 조한진 (한림대학교 자연과학대학 식품영양학과) ;
  • 심재훈 (한림대학교 자연과학대학 식품영양학과) ;
  • 소홍섭 (원광대학교 의과대학 전정와우기관연구센터 & 미생물학교실) ;
  • 윤정한 (한림대학교 자연과학대학 식품영양학과)
  • Received : 2012.05.09
  • Accepted : 2012.06.20
  • Published : 2012.09.30

Abstract

3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

본 연구에서는 염증반응을 조절하는 다양한 신호전달체계를 중심으로 분자생물학적 방법을 통해 piceatannol의 항염증 기전을 규명하였다. LPS로 염증반응을 유도한 Raw 264.7 대식세포에서 piceatannol은 iNOS의 발현 억제를 통해 NO의 생성을 감소시키고 염증성 사이토카인(TNF-${\alpha}$, IL-6, IL-$1{\beta}$)의 생성을 감소시켰다. 염증반응을 조절하는 신호전달체계 중 piceatannol은 LPS에 의해 유도된 $I{\kappa}B$의 분해와 p65의 핵으로의 이동을 억제하고, LPS에 의해 유도된 SAPK/JNK의 인산화를 억제하였다. 또한 piceatannol은 LPS와 IL-6(LPS에 의해 증가됨)에 의한 STAT3의 활성화를 억제하였다. 뿐만 아니라 piceatannol은 Nrf2의 핵 내 축적을 야기하고 ARE의 transcriptional activity를 증가시켜 HO-1의 발현을 증가시켰다. 본 연구의 결과, piceatannol은 NF-${\kappa}B$와 AP-1, STAT3 신호전달의 억제를 통해, 그리고 HO-1의 발현 증가를 통해 항염증 효과를 나타내었다(Fig. 8).

Keywords

References

  1. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454: 428-435. https://doi.org/10.1038/nature07201
  2. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. 2009. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8: 18-30. https://doi.org/10.1016/j.arr.2008.07.002
  3. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. 2004. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52: 4713-4719. https://doi.org/10.1021/jf040095e
  4. Matsuda H, Kageura T, Morikawa T, Toguchida I, Harima S, Yoshikawa M. 2000. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharideactivated macrophages. Bioorg Med Chem Lett 10: 323-327. https://doi.org/10.1016/S0960-894X(99)00702-7
  5. Vo NT, Madlener S, Bago-Horvath Z, Herbacek I, Stark N, Gridling M, Probst P, Giessrigl B, Bauer S, Vonach C, Saiko P, Grusch M, Szekeres T, Fritzer-Szekeres M, Jäger W, Krupitza G, Soleiman A. 2010. Pro- and anticarcinogenic mechanisms of piceatannol are activated dose dependently in MCF-7 breast cancer cells. Carcinogenesis 31: 2074-2081. https://doi.org/10.1093/carcin/bgp199
  6. Ko HS, Lee HJ, Kim SH, Lee EO. 2012. Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP-9: involvement of PI3K/AKT and NF-${\kappa}B$ pathways. J Agric Food Chem 60: 4083-4089. https://doi.org/10.1021/jf205171g
  7. Lee YM, Lim DY, Cho HJ, Seon MR, Kim JK, Lee BY, Park JH. 2009. Piceatannol, a natural stilbene from grapes, induces G1 cell cycle arrest in androgen-insensitive DU145 human prostate cancer cells via the inhibition of CDK activity. Cancer Lett 285: 166-173. https://doi.org/10.1016/j.canlet.2009.05.011
  8. Kim EJ, Park H, Park SY, Jun JG, Park JH. 2009. The grape component piceatannol induces apoptosis in DU145 human prostate cancer cells via the activation of extrinsic and intrinsic pathways. J Med Food 12: 943-951. https://doi.org/10.1089/jmf.2008.1341
  9. Kwon GT, Jung JI, Song HR, Woo EY, Jun JG, Kim JK, Her S, Park JH. 2012. Piceatannol inhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling. J Nutr Biochem 23: 228-238. https://doi.org/10.1016/j.jnutbio.2010.11.019
  10. Djoko B, Chiou RY, Shee JJ, Liu YW. 2007. Characterization of immunological activities of Peanut stilbenoids, arachidin-1, piceatannol, and resveratrol on lipopolysaccharide-induced inflammation of RAW 264.7 macrophages. J Agric Food Chem 55: 2376-2383. https://doi.org/10.1021/jf062741a
  11. Kim YH, Kwon HS, Kim DH, Cho HJ, Lee HS, Jun JG, Park JH, Kim JK. 2008. Piceatannol, a stilbene present in grapes, attenuates dextran sulfate sodium-induced colitis. Int Immunopharmacol 8: 1695-1702. https://doi.org/10.1016/j.intimp.2008.08.003
  12. Hu CM, Liu YH, Cheah KP, Li JS, Lam CS, Yu WY, Choy CS. 2009. Heme oxygenase-1 mediates the inhibitory actions of brazilin in RAW264.7 macrophages stimulated with lipopolysaccharide. J Ethnopharmacol 121: 79-85. https://doi.org/10.1016/j.jep.2008.09.030
  13. Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL, Park JH. 2003. Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. Am J Physiol Gastrointest Liver Physiol 284: G996-1005.
  14. So HS, Kim HJ, Lee JH, Lee JH, Park SY, Park C, Kim YH, Kim JK, Lee KM, Kim KS, Chung SY, Jang WC, Moon SK, Chung HT, Park RK. 2006. Flunarizine induces Nrf2-mediated transcriptional activation of heme oxygenase-1 in protection of auditory cells from cisplatin. Cell Death Differ 13: 1763-1775. https://doi.org/10.1038/sj.cdd.4401863
  15. Schoeniger A, Adolph S, Fuhrmann H, Schumann J. 2011. The impact of membrane lipid composition on macrophage activation in the immune defense against Rhodococcus equi and Pseudomonas aeruginosa. Int J Mol Sci 12: 7510-7528. https://doi.org/10.3390/ijms12117510
  16. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064.
  17. Crofford LJ. 1997. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl 49: 15-19.
  18. Jin CY, Moon DO, Lee KJ, Kim MO, Lee JD, Choi YH, Park YM, Kim GY. 2006. Piceatannol attenuates lipopolysaccharide-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-related proinflammatory mediators in BV2 microglia. Pharmacol Res 54: 461-467. https://doi.org/10.1016/j.phrs.2006.09.005
  19. Eberhardt W, Plüss C, Hummel R, Pfeilschifter J. 1998. Molecular mechanisms of inducible nitric oxide synthase gene expression by IL-1beta and cAMP in rat mesangial cells. J Immunol 160: 4961-4969.
  20. Lee AK, Sung SH, Kim YC, Kim SG. 2003. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-${\alpha}$ and COX-2 expression by sauchinone effects on I-${\kappa}B{\alpha}$ phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol 139: 11-20. https://doi.org/10.1038/sj.bjp.0705231
  21. Janssen-Heininger YM, Poynter ME, Baeuerle PA. 2000. Recent advances towards understanding redox mechanisms in the activation of nuclear factor ${\kappa}B$. Free Radic Biol Med 28: 1317-1327. https://doi.org/10.1016/S0891-5849(00)00218-5
  22. Liu D, Kim DH, Park JM, Na HK, Surh YJ. 2009. Piceatannol inhibits phorbol ester-induced NF-${\kappa}B$ activation and COX-2 expression in cultured human mammary epithelial cells. Nutr Cancer 61: 855-863. https://doi.org/10.1080/01635580903285080
  23. Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BB. 2002. Piceatannol inhibits TNF-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-mediated gene expression through suppression of $I{\kappa}B{\alpha}$ kinase and p65 phosphorylation. J Immunol 169: 6490-6497. https://doi.org/10.4049/jimmunol.169.11.6490
  24. Son PS, Park SA, Na HK, Jue DM, Kim S, Surh YJ. 2010. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-${\kappa}B$ activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of $IKK{\beta}$ as a potential target. Carcinogenesis 31: 1442-1449. https://doi.org/10.1093/carcin/bgq099
  25. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD. 1996. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 271: 16586-16590. https://doi.org/10.1074/jbc.271.28.16586
  26. Baud V, Karin M. 2009. Is NF-${\kappa}B$ a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8: 33-40. https://doi.org/10.1038/nrd2781
  27. Wang L, Walia B, Evans J, Gewirtz AT, Merlin D, Sitaraman SV. 2003. IL-6 induces NF-${\kappa}B$ activation in the intestinal epithelia. J Immunol 171: 3194-3201. https://doi.org/10.4049/jimmunol.171.6.3194
  28. Darnell JE Jr, Kerr IM, Stark GR. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415-1421. https://doi.org/10.1126/science.8197455
  29. Hodge DR, Hurt EM, Farrar WL. 2005. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41: 2502-2512. https://doi.org/10.1016/j.ejca.2005.08.016
  30. Yu Z, Zhang W, Kone BC. 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 367: 97-105. https://doi.org/10.1042/BJ20020588
  31. Yamawaki Y, Kimura H, Hosoi T, Ozawa K. 2010. MyD88 plays a key role in LPS-induced Stat3 activation in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 298: R403-R410. https://doi.org/10.1152/ajpregu.00395.2009
  32. Yu XW, Kennedy RH, Liu SJ. 2003. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 278: 16304-16309. https://doi.org/10.1074/jbc.M212321200
  33. Su L, David M. 2000. Distinct mechanisms of STAT phosphorylation via the interferon-${\alpha}/{\beta}$ receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. J Biol Chem 275: 12661-12666. https://doi.org/10.1074/jbc.275.17.12661
  34. Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80: 1895-1903. https://doi.org/10.1016/j.bcp.2010.07.014
  35. Lin HY, Juan SH, Shen SC, Hsu FL, Chen YC. 2003. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochem Pharmacol 66: 1821-1832. https://doi.org/10.1016/S0006-2952(03)00422-2
  36. Srisook K, Han SS, Choi HS, Li MH, Ueda H, Kim C, Cha YN. 2006. CO from enhanced HO activity or from CORM-2 inhibits both $O_2^-$ and NO production and downregulates HO-1 expression in LPS-stimulated macrophages. Biochem Pharmacol 71: 307-318. https://doi.org/10.1016/j.bcp.2005.10.042
  37. Lee TS, Chau LY. 2002. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8: 240-246. https://doi.org/10.1038/nm0302-240
  38. Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ. 2008. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66: 445-454. https://doi.org/10.1111/j.1753-4887.2008.00076.x
  39. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. 2005. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol 175: 3339-3346. https://doi.org/10.4049/jimmunol.175.5.3339
  40. Wung BS, Hsu MC, Wu CC, Hsieh CW. 2006. Piceatannol upregulates endothelial heme oxygenase-1 expression via novel protein kinase C and tyrosine kinase pathways. Pharmacol Res 53: 113-122. https://doi.org/10.1016/j.phrs.2005.09.006

Cited by

  1. Anti-Inflammatory Effects of Extracts from Caesalpinia sappan L. on Skin Inflammation vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.384
  2. Inhibition of tumor progression by oral piceatannol in mouse 4T1 mammary cancer is associated with decreased angiogenesis and macrophage infiltration vol.26, pp.11, 2015, https://doi.org/10.1016/j.jnutbio.2015.07.005
  3. Anti-Inflammatory Effect of Alginate Oligosaccharides Produced by an Alginate-Degrading Enzyme from Shewanella oneidensis PKA1008 on LPS-Induced RAW 264.7 Cells vol.48, pp.6, 2015, https://doi.org/10.5657/KFAS.2015.0888
  4. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review vol.20, pp.5, 2017, https://doi.org/10.1089/jmf.2017.3916
  5. Anti-Inflammatory Effect of Grateloupia imbricata Holmes Ethanol Extract on LPS-Induced RAW 264.7 Cells vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.181
  6. LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과 vol.43, pp.1, 2012, https://doi.org/10.4014/mbl.1412.12001
  7. 가지-청열소독음(淸熱消毒飮)의 항산화 및 항염 효능에 관한 연구 vol.43, pp.2, 2017, https://doi.org/10.15230/scsk.2017.43.2.125
  8. Anti-inflammatory Effect of Distylium racemosum leaf Biorenovate Extract in LPS-stimulated RAW 264.7 Macrophages Cells vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.051