DOI QR코드

DOI QR Code

Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading

다축하중이 작용하는 방진고무부품 피로손상 파라미터 결정에 관한 연구

  • Moon, Seong-In (Division of nonproliferation system research, Korea Atomic Energy Research Institute) ;
  • Woo, Chang-Su (Division of nano-convergence mechanical system, Korea Institute of Machinery & Materials) ;
  • Kim, Wan-Doo (Division of nano-convergence mechanical system, Korea Institute of Machinery & Materials)
  • 문성인 (한국원자력연구원 핵비확산시스템연구부) ;
  • 우창수 (한국기계연구원 나노융합기계연구본부) ;
  • 김완두 (한국기계연구원 나노융합기계연구본부)
  • Received : 2012.06.25
  • Accepted : 2012.07.19
  • Published : 2012.09.30

Abstract

Rubber components have been widely used in automotive industry as anti-vibration components for many years. These subjected to fluctuating loads, often fail due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop the durability analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. In order to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and strain energy density was proposed as the fatigue damage parameter for rubber components. The fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed.

고무재료는 배합조건에 따라 기계적 거동이 다르기 때문에 피로수명평가를 위해 부품소재에 대한 물성데이터 확보가 선행되어야 한다. 그러나 모든 종류의 배합조건을 고려하여 표준화된 재료물성을 확보하는 것은 현실적으로 불가능하다. 따라서 본 연구에서는 최소한의 제한된 실험으로부터 피로수명평가를 위한 입력물성을 선택하기 위한 방법을 제시하였으며, 피로수명 평가를 위한 최적 피로손상 파라미터를 결정하였다. 이러한 결과를 활용하여 부품의 피로수명 평가결과와 내구시험결과를 비교한 후, 본 연구에서 제안된 피로수명 평가절차의 타당성을 검토하였다.

Keywords

References

  1. Korea Institute of Machinery and Materials, "Development of Integrated Design System for Mechanical Rubber Components", M1-9911-00-0014, (2004).
  2. A. N. Gent, "Engineering with Rubber", Hanser Gardner (2001).
  3. C. S. Woo, W. D. Kim, and J. D. Kwon, "A Study on the Fatigue Life Prediction and Evaluation of Rubber Components for Automobile Vehicle", Transaction of KSME, 13, 56 (2005).
  4. C. H. Kim, K. J. Kim, H. T. Jeong, C. W. Kim, I. S. Sohn, and J. B. Kim, "Prediction of Durability, Static and Dynamic Properties on Rubber", Transaction of KSME, 14, 17 (2006).
  5. C. S. Woo, W. D. Kim, and J. D. Kwon, "A Study on the Material Properties and Fatigue Life Prediction of Natural Rubber Component", Material Science and Engineering, 367 (2008).
  6. J. H. Kim and H. Y. Jeong, "A Study on the Material Proper-ties and Fatigue Life of Natural Rubber with Different Carbon Blacks", Internal Journal of Fatigue, 27, 263 (2005). https://doi.org/10.1016/j.ijfatigue.2004.07.002
  7. B. J. Roberts and J. B. Benzies, "The Relationship between Uniaxial and Equibiaxial Fatigue in Gum and Carbon black filled Vulcanizates", Proceedings of Rubbercon, 2.1, 1 (1997).
  8. V. Mars and A. Fatemi, "A Literature Survey on Fatigue Analysis Approaches for Rubber", International Journal of Fatigue, 24, 949 (2002). https://doi.org/10.1016/S0142-1123(02)00008-7
  9. GM, Standard Test Methods for Vulcanized Rubber and TPE for Use in finite Element Analysis Modeling (2001).
  10. N. Andre, G. Cailletaud, and R. Piques, "Haigh Diagram for Fatigue Crack Initiation Prediction of Natural Rubber Components", Kautschuk Und Gummi dunstoffe, 52, 120 (1999).
  11. Dassault Systems, ABAQUS Version 6.8 User's manual (2008).

Cited by

  1. Damping Device for Hydraulic Breaker: Impact and Noise Reduction vol.17, pp.4, 2018, https://doi.org/10.14775/ksmpe.2018.17.4.113