DOI QR코드

DOI QR Code

Stress Relaxation of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers

Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체의 응력완화

  • Received : 2012.06.11
  • Accepted : 2012.06.28
  • Published : 2012.09.30

Abstract

The rheological parameters of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The determination of rheological parameters was performed from computer calculation. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusions and viscosities and activation energies of flow segments.

응력완화 실험 곡선을 Eyring-Halsey 비뉴톤 모델의 이론식에 적용하여 poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 유변학적 파라메타를 얻었다. 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하였다. 유동 파라메타를 컴퓨터 프로그램을 이용하여 계산하였다. 이들 시료의 유동 파라메타는 유동 단위의 자체확산, 유동점성, 유동 활성화 에너지와 직접적인 연관을 갖는 것으로 규명되었다.

Keywords

References

  1. Z. H. Stachurski, "Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behaviour", Polymer, 43, 7419 (2002). https://doi.org/10.1016/S0032-3861(02)00688-2
  2. M. T. Abadi, "Micromechanical analysis of stress relaxation response of fiber-reinforced polymers", Composites Science and Technology, 69, 1286 (2009). https://doi.org/10.1016/j.compscitech.2009.02.036
  3. S. A. Baeurle, A. Hotta, and A. A. Gusev, "A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers", Polymer, 46, 4344 (2005). https://doi.org/10.1016/j.polymer.2004.07.034
  4. M. Patel, P. R. Morrell, and J. J. Murphy, Continuous and intermittent stress relaxation studies on foamed polysiloxane rubber", Polymer Degradation and Stability, 87, 201 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.020
  5. H. H. Le, S. Ilisch, and H. J. Radusch, "Characterization of effect of the filler dispersion on the stress relaxation behavior of carbon black filled ruber composites", Polymer, 50, 2294 (2009). https://doi.org/10.1016/j.polymer.2009.02.051
  6. V. P. Privalko, S. M. Ponomarenko, E. G. Privalko, F. Schon, and W. Gronski, "Thermoelasticity and stress relaxation behavior of polychloroprene/organoclay nanocomposites", European Polymer Journal, 41, 3042 (2005). https://doi.org/10.1016/j.eurpolymj.2005.06.011
  7. S. Siengchin and J. K. Kocsis, "Mechanical and stress relaxation behavior of santroprene thermoplastic elastomer/boehmit alumina nanocomposites produced by water-mediated and direct melt compounding", Composites Part A: Applied Science and Manufacturing, 41, 768 (2010). https://doi.org/10.1016/j.compositesa.2010.02.009
  8. P. H. DeHoff and K. J. Anusavice, "Shear stress relaxation of dental ceramics determined from creep behavior", Dental Materials, 20, 717 (2004). https://doi.org/10.1016/j.dental.2003.10.005
  9. R. K. June, S. Ly, and D. P. Fyhrie, "Cartilage stress relaxation proceeds slower at higher compressive strains", Archives of Biochemistry and Biophysics, 483, 75 (2009). https://doi.org/10.1016/j.abb.2008.11.029
  10. C. Machiraju, A. V. Phan, A. W. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model", Computer Methods and Programs in Biomedicine, 83, 29 (2006). https://doi.org/10.1016/j.cmpb.2006.05.004
  11. N. J. Kim, "Stress relaxation and nonlinear viscoelastic model of PAN-PVC copolymer", Elastomers and Composites, 45, 250 (2010).
  12. N. J. Kim, E. R. Kim, and S. J. Hahn, "Solvent effect on stress relaxation of PET filament fibers and self diffusion of crystallites", Bull. Korean Chem. Soc., 12, 468 (1991).
  13. T. Kunugi, Y. Isobe, K. Kimura, Y. Asanuma, and M. Hashimoto, "Stress relaxation of oriented nylon 6 fibers", J. Appl. Polym. Sci., 24, 923 (1979). https://doi.org/10.1002/app.1979.070240405
  14. S. P. Mishra and B. L. Deopula, "Tie chains and modulus of nylon 6 fibers", J. Appl. Polym. Sci., 27, 3211 (1982). https://doi.org/10.1002/app.1982.070270903
  15. A. J. Owen and R. Bonart, "Cooperative relaxation processes in polymers", polymer, 26, 1034 (1985). https://doi.org/10.1016/0032-3861(85)90225-3
  16. K. W. Chase and W. Goldsmith, "Mechanical and optical characterization of anelastic polymer at large strain rates and large strains", Experimental Mechanics, 17, 10 (1974).
  17. V. B. Gupta and S. Kumar, "A model for nonlinear creep of textile fibers", Text. Res. J., 47, 647 (1977). https://doi.org/10.1177/004051757704701002
  18. S. Kumar and V. B. Gupta, "A nonlinear viscoelastic model for textile fibers", Text. Res. J., 48, 429 (1978). https://doi.org/10.1177/004051757804800712
  19. A. S. Krausz and H. Eyring, "Deformation Kinetics", John Wiley and sons, New York, 1975.
  20. W. E. Morton and J. W. S. Hearles, "Physical Properties of Textile Fibers", Heinemann, London, 1975.