등각 기하대수를 이용한 7 자유도 로봇 팔의 역기구학 해석

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra

김제석 ¹, 지용관 ¹, 박장현 ²,⊠ Je Seok Kim¹, Yong Kwan Ji¹, and Jahng Hyon Park^{2,}⊠

Manuscript received: 2011.10.14 / Accepted: 2012.6.12

October 2012 / 1119

In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Key Words: Conformal Geometric Algebra (등각 기하 대수), Inverse Kinematics (역기구학), Anthropomorphic Robot Arm (인간형 로봇 팔), Redundant Manipulator (여유자유도 매니플레이터)

기호설명

 $m_i = mass$ of the robot arm's links $r_i = center$ of mass of robot arm's links $z_i = position z$ -axis

1. 서론

산업 현장에서 운용되는 로봇 팔은 작업공간 상에서 필요한 자유도 만을 갖도록 설계되어 작 업공간 내 존재하는 특이점이나 장애물을 회피하 여 작업을 수행하기 어렵고 작업환경의 변화에 대한 적응 능력이 떨어지는 등의 문제점을 내포 한다. 또한 로봇 산업이 서비스 로봇으로 범위가 확장됨에 따라 사람에게 친근한 형태의 로봇 개발 이 중요시 되고 있다. 이에 인간의 팔 형태를 모 방한 Anthropomorphic 7-자유도 로봇 팔의 연구가 꾸준히 이루어지고 있다.

일반적으로 7-자유도 로봇 팔의 역기구학을 해 석하기 위해서는 의사역행렬을 이용한 방법과 기하 학적인 방법 등이 쓰인다. 의사역행렬법 ^{1.3} 은 자코 비안을 이용하여 속도해를 찾기 때문에 특이점의 발생가능성이 높고 속도해를 다시 적분해야 하므로 누적오차가 발생한다. 기하학적 방법은 Tolani⁴가 컴 퓨터 그래픽스 분야에서 사람의 팔 동작을 자연스 럽게 표현하고자 7-자유도 로봇 팔 형태를 어깨, 팔 꿈치, 손목의 세 관절로 구분하여 기하학적 방법으 로 접근하였으나, 3 차원 공간 상에서 구와 원 등의 요소를 표현하는데 어려움이 존재하였다. 이에 본 논문에서는 우선 Tolani 가 제시한 연구를 기하학적 관점에서 구와 원 등의 기하학적 형상을 직관적이 고 수학적으로 쉽게 표현할 수 있는 등각 기하대수 (Conformal geometric algebra)를 이용하여 재해석을 시도하여 실시간 연산이 가능토록 하였다.

등각 기하대수를 이용한 로봇 팔의 역기구학 해 석 연구는 이미 Hildenbrand,⁵⁻⁸ Zamora⁹ 등에 의해 수 행된 바 있다. 이들은 주어진 작업공간에 적합한 5~6 자유도 로봇 팔을 대상으로 수행하였기에 단순 한 기하학적 요소 만으로 해석이 가능하였다. 하지 만 7-자유도 역기구학은 여분의 자유도가 존재하기 때문에 목적함수를 최적화할 필요성이 존재한다.

최근 들어 7-자유도 로봇 팔의 역기구학 해석에 있어 목적함수에 관련된 연구도 많이 진행되고 있 다. 여유자유도를 이용하여 사람의 팔 동작과 비슷 한 움직임을 만들 수 있는 목적 함수¹⁰를 제안하였 고, 반복성과 조작성 지수를 선정함으로써 목적함수 를 최적화 하는 방법을 제시하였다.^{11,12} 하지만 대부 분의 기존 연구들은 로봇 팔의 동특성을 고려하지 않기 때문에 실제 로봇의 거동 시 링크 및 외부하 중에 의한 진동 등에 취약할 수 있다. 이에 본 논문 에서는 또한 등각 기하대수를 이용하여 여유자유도 를 가지는 7-자유도 로봇 팔의 역기구학을 해석하 기 위해 로봇 팔의 움직임에 따른 동특성을 고려하 여 목적함수를 생성하고 이를 최적화하여 팔꿈치의 위치를 결정하는 방법에 대해 연구하였다. 추가적 으로 로봇 팔이 교시된 경로를 정확히 추종하는데 있어 목표 경로를 계획하도록 시뮬레이션을 구현 하여 이를 기존의 의사역행렬법과 비교하였다.

2. 등각 기하대수

2.1 소개

등각 기하대수는 Projective Geometry, Quaternion, Lie Algebra 등 다양한 수학적 이론을 Fig. 1 과 같 이 통합하여 이해하기 쉽게 만든 수학적 언어로서

Projective Geometry(4D) (3D Rotations) Vector Unification

Fig. 1 Conformal geometric algebra

1960 년대에 Hestenes 가 기하대수를 물리학에 적 용하면서부터 다양한 분야에 두루 쓰이게 되었다. 이로 인해 로봇공학, 컴퓨터 그래픽스 등에서 새 로운 방법으로 주목을 받고 있다.¹³⁻¹⁵

2.2 기초 이론

등각 기하대수는 3 차원 유클리드 기하대수의 기저벡터(Basis)에 두 개의 기저벡터를 추가하여 5 차원으로 확장시킨 이론이다. 등각 기하대수의 기저벡터는 다음과 같이 정의된다.⁶

$$X = \{e_1, e_2, e_3, e_0, e_\infty\}$$
(1)

처음 세 개의 기저벡터들은 유클리드 기하대수 의 기저벡터와 동일하다. 추가된 두 개의 기저벡 터들은 다음과 같은 의미를 가진다.

• e 는 3 차원 공간의 원점(origin)을 표현

• e_{∞} 는 무한한 점(point at infinity)를 표현

등각 기하대수에서 내적, 외적과 더불어 기하 학적 곱(Geometric Product) 연산자를 사용한다. 식 (2)와 같이 다른 공간 상에 존재하는 각각의 요소 들의 합으로 정의되는 복소수와 마찬가지로 다양 한 요소들의 결합을 단순하게 유지시킬 수 있다.

 $\mathbf{u}\mathbf{v} = \mathbf{u} \wedge \mathbf{v} + \mathbf{u} \cdot \mathbf{v} \tag{2}$

2.3 기본적인 기하학적 요소

등각 기하대수는 다양한 기하학적 요소들을 직 관적으로 표현하도록 IPNS (Inner Product Null Space) 표현법과 OPNS (Outer Product Null Space) 표현법을 제공한다. 두 표현법은 이중연산자(Dualization)를 의미하는 첨자 '*'에 의해 서로 변환된다.

OPNS 표현법은 외적 '∧'에 의해 기하학적 요소 상에 존재하는 점 P,들을 결합시켜 기하학적

Entity	IPNS	OPNS	
Point	$\mathbf{P} = \mathbf{x} + 0.5\mathbf{x}^2 e_{\infty} + e_0$		
Sphere	$\mathbf{S} = \mathbf{P} - 0.5r^2 e_{\infty}$	$\mathbf{S}^* = \mathbf{P}_1 \wedge \mathbf{P}_2 \wedge \mathbf{P}_3 \wedge \mathbf{P}_4$	
Plane	$\boldsymbol{\pi} = \mathbf{n} + d\boldsymbol{e}_{\infty}$	$\boldsymbol{\pi}^* = \mathbf{P}_1 \wedge \mathbf{P}_2 \wedge \mathbf{P}_3 \wedge \boldsymbol{e}_{\infty}$	
Circle	$\mathbf{Z} = \mathbf{S}_1 \wedge \mathbf{S}_2$	$\mathbf{Z}^* = \mathbf{P}_1 \wedge \mathbf{P}_2 \wedge \mathbf{P}_3$	
Line	$\mathbf{L} = \boldsymbol{\pi}_1 \wedge \boldsymbol{\pi}_2$	$\mathbf{L}^* = \mathbf{P}_1 \wedge \mathbf{P}_2 \wedge \mathbf{e}_{\infty}$	
Point Pair	$\mathbf{PP} = \mathbf{S}_1 \wedge \mathbf{S}_2 \wedge \mathbf{S}_3$	$\mathbf{PP}^* = \mathbf{P}_1 \wedge \mathbf{P}_2$	

Table 1 List of conformal geometric entities

요소를 의미한다. INPS 표현법은 외적 'ㅅ'에 의 해 기하학적 요소들이 겹치는 요소를 의미한다.

2.4 Transformation 과 Motion 2.4.1 회전 (Rotation)

임의의 기하학적 요소 O가 회전축 L에 대해 ∉ 만큼 회전을 다음과 같이 정의한다.

$$\mathbf{R} = e^{-\frac{\phi}{2}\mathbf{L}} = \cos\left(\frac{\phi}{2}\right) - \mathbf{L}\sin\left(\frac{\phi}{2}\right)$$
(3)
$$\mathbf{O}_{\text{rot}} = \mathbf{R}\mathbf{O}\tilde{\mathbf{R}}$$

여기서, **R**은 회전 연산자 Rotor 를 의미하고, **O**_m 는 임의의 기하학적 요소 **O**가 Rotor 의 기하학적 곱에 의한 회전을 의미한다.

2.4.2 평행이동 (Translation)

임의의 기하학적 요소 **O**가 벡터 **t** 방향으로 평행이동을 다음과 같이 정의한다.

$$\mathbf{T} = e^{-\frac{1}{2}\mathbf{t}e_{\infty}} = 1 - \frac{1}{2}\mathbf{t}e_{\infty}$$
(4)
$$\mathbf{O}_{\text{trans}} = \mathbf{T}\mathbf{O}\tilde{\mathbf{T}}$$

여기서, **T**는 평행이동 연산자 Translator 를 의미하고, **O**_{trans}는 임의의 기하학적 요소 **O**가 Rotor 의 기하학적 곱에 의해 평행이동을 의미한다.

2.4.3 고정된 물체의 운동 (Rigid body motion)

임의의 기하학적 요소 O가 회전축 L에 대해 ♦ 만큼 회전하고, 벡터 t 방향으로 평행 이동하는 경우에 다음과 같이 정의한다.

$$\mathbf{M} = \mathbf{RT}$$

$$\mathbf{O}_{\text{rigid body motion}} = \mathbf{MO}\tilde{\mathbf{M}}$$
(5)

여기서, Motor M은 Rotor 와 Translator 의 기하학적 곱으로 정의된다. 등각 기하대수의 자세한 내용은 Hildenbrand⁸의 논문을 참조하기 바란다.

3. 역기구학 해석

3.1 가정

본 논문에서 다루는 Anthropomorphic 7-자유도

로봇 팔은 총 7 개의 관절을 가진다. 등각 기하대 수를 이용하여 기구학 해석하기에 앞서 바닥(Base) 에 인접한 세 축과 말단(End-effector)에 인접한 세 축이 각각 한 점에서 만나므로 Tolani⁴ 가 제시한 형상으로 가정하였다.

Fig. 2 7-DOF anthropomorphic robot arm

- 바닥(Base)에 인접한 3 개의 관절(θ₁,θ₂,θ₃)은 어깨(3-DOF)로 가정
- 로봇 팔의 가운데 있는 1 개의 관절(θ₄)은 팔 꿈치(1-DOF)로 가정
- 말단(End-effector)에 인접한 3 개의 관절 (θ₃,θ₆,θ₇)은 손목(3-DOF)으로 가정

3.2 어깨와 손목 관절 3.2.1 어깨의 위치

어깨의 위치는 항상 기준 좌표계(Global Coordinates)의 z 축 상에 존재하므로, 등각 기하대 수의 기본적인 기하학 요소 중 점(Point)의 표현 법을 이용하여 찾을 수 있고, 기호 P_2 로 표기한 다. 어깨의 위치 P_2 를 등각 기하대수로 표현하면 식(6)과 같다.

$$\mathbf{P}_{2} = d_{1}e_{3} + \frac{1}{2}d_{1}^{2}e_{\infty} + e_{0}$$
(6)

3.2.2 손목의 위치

손목의 위치는 주어진 목표 위치와 자세에 의 해 결정되므로, 등각 기하대수의 고정된 물체의 운동 표현법(Rigid Body Motion)을 이용하여 찾을 수 있고, 기호 **P**₆으로 표기한다.

손목의 위치는 \mathbf{P}_6 은 Fig. 3 와 같이 목표 위치 \mathbf{P}_i 에서의 좌표계를 목표 자세 $(\theta_x, \theta_y, \theta_z)$ 만큼 회전시 킨 후, 이를 -z축 방향으로 말단링크 d_4 만큼 평행 이동시킨 점으로 정의한다. 고정된 물체의 운동을 표현하기 위해 식(7)과 같이 Rotor \mathbf{R}_i 와 Translator \mathbf{T}_i 의 기하학적 곱인 Motor \mathbf{M}_i 를 사용한다.

$$\mathbf{R}_{t} = \exp\left(-\frac{\theta_{x}}{2}e_{1}\right)\exp\left(-\frac{\theta_{y}}{2}e_{2}\right)\exp\left(-\frac{\theta_{z}}{2}e_{3}\right)$$
$$\mathbf{T}_{t} = \exp\left(-\frac{d_{4}e_{3}}{2}\right) = 1 - \frac{d_{4}e_{3}}{2} \tag{7}$$
$$\mathbf{M}_{t} = \mathbf{R}_{t}\mathbf{T}_{t}$$

점 P₆은 고정된 물체의 운동 표현법에 의해 식(8)과 같이 표현된다.

Fig. 3 Wrist point

3.3 팔꿈치 관절 3.3.1 팔꿈치의 궤적

팔꿈치 위치는 한 점으로 표현되는 어깨와 손 목과는 달리 무한대의 점으로 표현되며 일정한 원 의 궤적 상에 존재한다. 이는 어깨와 손목의 위치 는 일정하므로 Fig. 4 와 같이 2 개의 구가 겹칠 때 생성되는 원이 팔꿈치의 궤적으로 표현된다.

중심은 어깨의 위치 **P**₂ 이고 반지름이 하위링 크 *d*, 인 어깨에서의 구는 기호 **S**, 로 표기한다.

$$\mathbf{S_2} = \mathbf{P_2} - \frac{1}{2}d_2^2 e_{\infty} \tag{9}$$

중심은 손목의 위치 **P**₆ 이고 반지름이 상위링 크 *d*₃인 손목에서의 구는 기호 **S**₆로 표기한다.

$$\mathbf{S_6} = \mathbf{P_6} - \frac{1}{2} d_3^2 e_{\infty} \tag{10}$$

팔꿈치의 궤적은 앞서 정의한 2 개의 구가 겹 칠 때 생성되는 원으로, 기호 Z₄로 표기한다.

$$\mathbf{Z}_4 = \mathbf{S}_2 \wedge \mathbf{S}_6 \tag{11}$$

3.3.2 팔꿈치의 위치

팔꿈치의 궤적 Z₄는 원의 형상을 가진 궤적이 므로 무한한 해를 가지는 점의 집합이다. 따라서 Z₄ 상에서 최적의 팔꿈치 위치 P₄를 찾는 알고리 즘이 요구된다.

본 논문에서는 팔꿈치의 위치를 결정하기 전에 팔꿈치의 궤적 \mathbf{Z}_4 상에 존재하는 팔꿈치의 위치들 (Sample Points)을 Threshold n의 수만큼 다음과 같 이 정의하였다.

$$\mathbf{P}_{4,i} = \left\{ \mathbf{P}_{4,i} \in \mathbf{Z}_4 \mid i = 0, 1, 2, \cdots, n-1 \right\}$$
(12)

그리고 기준이 되는 팔꿈치의 위치를 $P_{4,0}$ 로 정의하고, 평면 π_{026} 과 팔꿈치의 궤적 Z_4 가 만나 는 쌍점(Point Pair) PP_4 중 한 점을 선정하여 다음 과 같이 구한다.

$$\boldsymbol{\pi}_{026} = \left(e_0 \wedge \mathbf{P}_2 \wedge \mathbf{P}_6 \wedge e_\infty\right)^* \tag{13}$$

$$\mathbf{PP}_4 = \mathbf{\pi}_{026} \wedge \mathbf{Z}_4 \tag{14}$$

$$\mathbf{P}_{4.0} = \frac{\sqrt{|\mathbf{PP}_4 \cdot \mathbf{PP}_4|} \pm \mathbf{PP}_4}{e_{\infty} \cdot \mathbf{PP}_4} \tag{15}$$

기준이 되는 팔꿈치의 위치 $P_{4,0}$ 를 회전축 L_{26} 에 대해 ϕ_i 만큼 회전을 시키면 나머지 Sample Points $P_{4,i}$ 를 다음과 같이 구할 수 있다.

$$\mathbf{R}_{4,i} = e^{-\frac{\phi_i}{2}\mathbf{L}_{26}} = \cos\left(\frac{\phi_i}{2}\right) - \mathbf{L}_{26}\sin\left(\frac{\phi_i}{2}\right)$$
(16)

$$\mathbf{P}_{4,i}(\boldsymbol{\phi}) = \mathbf{R}_{4,i} \mathbf{P}_{4,0} \tilde{\mathbf{R}}_{4,i} \tag{17}$$

여기서, $\mathbf{L}_{26} = \left(\mathbf{P}_2 \wedge \mathbf{P}_6 \wedge e_{\infty}\right)^* \ \circ] \overline{\mathcal{I}} \quad \phi_i = \phi_{i-1} + \frac{2\pi}{n} \ \circ]$ 다.

3.4 목적함수 최소화

본 논문에서는 팔꿈치 관절이 어디에 위치하냐 에 따라 로봇 팔에 작용하는 힘은 다르게 나타나 는 특성에 기인하여 작업자가 로봇 팔을 구동함에 있어 관절에 가해지는 힘이 최소가 되는 목적함수 (Cost Function)를 정의하였다.

3.4.1 오일러-라그랑주 방정식

로봇 팔에 가해지는 힘의 크기를 계산하기 위 해 오일러-라그랑주 방정식(Euler-Lagrange Equation) 을 이용한다. 오일러-라그랑주 방정식은 일반화 좌 표를 사용하므로 물체의 위치를 표현할 수 있는 어떠한 좌표계라도 사용할 수 있다.¹⁶

본 논문에서는 일반화 좌표를 팔꿈치의 위치 \mathbf{P}_4 로 정의하며, 오일러-라그랑주 방정식은 다음과 같이 정의한다.

$$\mathbf{F}_{4} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{P}}_{4}} \right) - \frac{\partial L}{\partial \mathbf{P}_{4}}$$
(18)

라그랑지안(Lagrangian) L은 각 링크의 질량중 심에서 발생되는 운동에너지(Kinetic Energy)와 위 치에너지(Potential Energy)의 차로 다음과 같다.

$$L = T - U = \sum_{i=1}^{4} \frac{1}{2} m_i \dot{\mathbf{r}}_i^2 - \sum_{i=1}^{4} m_i g z_i$$
(19)

3.4.2 링크의 질량중심

라그랑지안 L 에 관한 식에서 각 링크들의 질 량중심을 일반화 좌표인 팔꿈치의 위치 P₄에 관 한 함수로 변환하고자 한다. 우선 각 링크의 질량 중심은 항상 링크의 중심에 존재토록 하기 위해 링크를 균일한 봉으로 가정한다.

기반링크의 질량중심 r_i은 기반링크의 중심에 존재하므로 다음과 같다.

$$\mathbf{r}_1 = \frac{\mathbf{P}_2}{2} \tag{20}$$

하위링크의 질량중심 r₂는 어깨의 위치 P₂에 서 하위링크의 질량중심으로 이동시키는 역할을 하는 Translator T₂의 기하학적 곱으로 다음과 같 이 간소화할 수 있다.

$$\mathbf{T}_{2} = 1 - \frac{\mathbf{P}_{4} - \mathbf{P}_{2}}{2} e_{\infty}$$

$$\mathbf{r}_{2} = \mathbf{T}_{2} \mathbf{P}_{2} \quad \tilde{\mathbf{T}}_{2} = \mathbf{P}_{2} + \frac{\mathbf{P}_{4} - \mathbf{P}_{2}}{2}$$
(21)

상위링크의 질량중심 \mathbf{r}_3 는 손목의 위치 \mathbf{P}_6 에 서 하위링크의 질량중심으로 이동시키는 Translator \mathbf{T}_1 의 기하학적 곱으로 간소화할 수 있다.

$$\mathbf{T}_{3} = 1 - \frac{\mathbf{P}_{4} - \mathbf{P}_{6}}{2} e_{\infty}$$

$$\mathbf{r}_{3} = \mathbf{T}_{3} \ \mathbf{P}_{6} \ \tilde{\mathbf{T}}_{3} = \mathbf{P}_{6} + \frac{\mathbf{P}_{4} - \mathbf{P}_{6}}{2}$$
(22)

말단링크의 질량중심 \mathbf{r}_4 는 손목의 위치 \mathbf{P}_6 과 목표위치 \mathbf{P}_7 사이에 존재하므로 다음과 같다.

$$\mathbf{r}_4 = \mathbf{P}_6 + \frac{\mathbf{P}_t - \mathbf{P}_6}{2} \tag{23}$$

3.4.3 팔꿈치에 가해지는 힘

간소화된 각 링크의 질량중심을 식(19)에 대입 하면 라그랑지안 *L*은 다음과 같다.

$$L = \frac{1}{4} \begin{bmatrix} m_{1} \dot{\mathbf{P}}_{2}^{2} + m_{2} \dot{\mathbf{P}}_{4}^{2} \\ +m_{3} (\dot{\mathbf{P}}_{4} + \dot{\mathbf{P}}_{6})^{2} + m_{4} (\dot{\mathbf{P}}_{6} + \dot{\mathbf{P}}_{l})^{2} \end{bmatrix} - \frac{g}{2} \begin{bmatrix} m_{1} z_{2} + m_{2} (z_{2} + z_{4}) \\ +m_{3} (z_{4} + z_{6}) + m_{4} (z_{6} + z_{l}) \end{bmatrix}$$
(24)

따라서, 오일러-라그랑주 방정식에 의해 팔꿈치 관절에 가해지는 힘은 다음과 같이 정의된다.

$$\mathbf{F}_4 = \frac{1}{4} \Big[\big(m_2 + m_3 \big) \big(\ddot{\mathbf{P}}_4 - 2g \ e_3 \big) + m_3 \ddot{\mathbf{P}}_6 \Big]$$
(25)

3.4.4 목적함수

앞서 정의한 팔꿈치에 가해지는 힘의 크기는 팔꿈치가 어디에 위치하느냐에 따라 달라진다. 그 러므로 팔꿈치 관절이 원 Z_4 상에서 가해지는 힘 의 크기가 최소가 되는 점 $P_{4,i}$ 를 찾기 위해 최소 자승법 ¹⁷을 사용한다. 목적함수는 팔꿈치 관절의 위치에 따라 팔꿈치에 가해지는 힘의 크기에 관한 함수로 정의한다. 이를 위해 식(17)의 팔꿈치 위치 의 Sample Point $P_{4,i}(\phi_i)$ 와 식(25)의 팔꿈치 위치 가해지는 힘의 크기 $\|\mathbf{F}_4\|$ 를 결합하여 그 관계식을 4 차의 다항식으로 표현하여 필요한 팔꿈치의 위 치 선택을 용이하게 하고 그 결과를 최대한 유사 하게 표현할 수 있게 하고자 다음과 같이 정의하 고, 기호 E로 표기하였다.

$$E[a_{0},a_{1},a_{2},a_{3},a_{4}] = \min \sum_{i=1}^{n} \left[\left\| \mathbf{F}_{4} \right\| - \left(a_{0} + a_{1}\phi_{i} + a_{2}\phi_{i}^{2} + a_{3}\phi_{i}^{3} + a_{4}\phi_{i}^{4} \right) \right]^{2}$$
(26)

여기서, ϕ_i 는 기준이 되는 팔꿈치의 위치 $\mathbf{P}_{4,0}$ 를 회전축 \mathbf{L}_{26} 에 대해 회전시킨 각이고, $\|\mathbf{F}_{4,i}\|$ 는 회 전각 ϕ_i 만큼 회전된 팔꿈치의 위치 $\mathbf{P}_{4,i}$ 에 가해지 는 힘의 크기이다.

이 목적함수가 최소화되는 각도 x_i 를 찾기 위 해 목적함수 E를 목적함수의 계수 a_0 , a_1 , a_2 , a_3 , a_4 에 관해 편미분하면 다음과 같다.

$$\frac{\partial E}{\partial a_{0}} = -2\sum_{i=1}^{n} \left[\left\| \mathbf{F}_{4} \right\| - \left(a_{0} + a_{1}\phi_{i} + a_{2}\phi_{i}^{2} + a_{3}\phi_{i}^{3} + a_{4}\phi_{i}^{4} \right) \right] \\ \frac{\partial E}{\partial a_{1}} = -2\sum_{i=1}^{n}\phi_{i} \left[\left\| \mathbf{F}_{4} \right\| - \left(a_{0} + a_{1}\phi_{i} + a_{2}\phi_{i}^{2} + a_{3}\phi_{i}^{3} + a_{4}\phi_{i}^{4} \right) \right] \\ \vdots \\ \frac{\partial E}{\partial a_{4}} = -2\sum_{i=1}^{n}\phi_{i}^{4} \left[\left\| \mathbf{F}_{4} \right\| - \left(a_{0} + a_{1}\phi_{i} + a_{2}\phi_{i}^{2} + a_{3}\phi_{i}^{3} + a_{4}\phi_{i}^{4} \right) \right]$$
(27)

위 식을 행렬로 식(28)과 같이 표현할 수 있다. 이 행렬을 반데르몬드 행렬(Vandermonde matrix)이 라 부른다. 이 행렬로부터 목적함수의 계수값을 결정할 수 있다.

$$\begin{bmatrix} a_{0} \\ a_{i} \\ \vdots \\ a_{4} \end{bmatrix} = \begin{bmatrix} n & \sum_{i=1}^{n} \phi_{i} & \cdots & \sum_{i=1}^{n} \phi_{i}^{4} \\ \sum_{i=1}^{n} \phi_{i} & \sum_{i=1}^{n} \phi_{i}^{2} & \cdots & \sum_{i=1}^{n} \phi_{i}^{5} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} \phi_{i}^{4} & \sum_{i=1}^{n} \phi_{i}^{5} & \cdots & \sum_{i=1}^{n} \phi_{i}^{8} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^{n} \|\mathbf{F}_{4}\| \\ \sum_{i=1}^{n} \phi_{i}^{H} \|\mathbf{F}_{4}\| \\ \vdots \\ \sum_{i=1}^{n} \phi_{i}^{4} \|\mathbf{F}_{4}\| \end{bmatrix}$$
(28)

목적함수를 최소화하는 값은 4 차 방정식의 변

곡점이므로 변곡점의 해를 찾는다. 이를 위해 4 차 방정식의 목적함수를 미분한 후, 이 미분한 3 차 방정식의 해를 찾는다. 3 차 방정식의 해는 카르나 노의 해법 ¹⁸을 이용하여 찾았다. 세 개의 해 중에 서 힘의 크기가 최소인 값을 선택하면 그 값이 최 소가 되는 해 **P**₄의 위치가 된다.

3.5 로봇 팔의 관절각 계산

관절의 위치가 모두 결정되었으므로, 관절각 을 구하고자 한다. 로봇 팔의 관절각은 두 개의 기하학적 요소(직선, 평면)가 교차할 경우에 생기 는 사잇각을 식(29)를 이용하여 계산할 수 있다. 자 세한 내용은 Hildenbrand⁸ 의 논문을 참고하기 바 란다.

$$\theta = \cos^{-1} \left(\frac{\mathbf{O}_1^* \cdot \mathbf{O}_2^*}{\left| \mathbf{O}_1^* \right| \left| \mathbf{O}_2^* \right|} \right)$$
(29)

여기서, **O**₁^{*}, **O**₂^{*}는 교차하는 기하학적 요소를 나 타내며, 기하학적 요소로서 직선(Line)과 평면 (Plane)만 사용할 수 있다.

4. 시뮬레이션

4.1 시뮬레이션 개요

로봇 팔의 역기구학 해석은 추후에 로봇의 모 션을 생성하기 위해 사용되기 때문에 검증이 필 요하다. 이를 위해 기존에 널리 사용되는 의사역 행렬법과의 비교를 통해 등각 기하대수를 이용한 역기구학 해석법의 정확성과 연산시간을 검증하 였다.

4.2 기존의 의사역행렬법

서론에서도 언급했듯이 대부분의 7-자유도 로 봇 팔의 역기구학 해석은 의사역행렬법을 이용하 여 연구가 진행되고 있다.

$$\mathbf{\theta} = \begin{bmatrix} \theta_1, \ \dots, \ \theta_7 \end{bmatrix}^T, \ \mathbf{e} = \begin{bmatrix} {}^0 x_7 \\ {}^0 \theta_7 \end{bmatrix}$$
(30)

로봇 팔의 관절 변수와 말단의 목표 위치와 자 세가 식(30)과 같을 때 기구학적 관계식은 식(31) 과 같다. 식(31)의 비선형 관계식을 자코비안에 관한 식 으로 표현한 속도 기구학은 다음과 같다.

$$\dot{\mathbf{e}} = J\dot{\mathbf{\theta}} = \begin{bmatrix} {}^{0}\boldsymbol{v}_{7} \\ {}^{0}\boldsymbol{\omega}_{7} \end{bmatrix}$$
(32)

그러므로 역기구학의 속도 해는 식(33)과 같다.

$$\dot{\mathbf{\Theta}} = J^{-1} \dot{\mathbf{e}} \tag{33}$$

그러나 여유자유도 로봇 팔이기 때문에 J(q)가 정방행렬이 되지 못하므로 의사역행렬 J^+ 로 관절 변수의 속도해를 구한다.

$$\dot{\boldsymbol{\Theta}} = J^T \left(J J^T \right)^{-1} \dot{\boldsymbol{e}} = J^+ \dot{\boldsymbol{e}}$$
(34)

관절의 속도해를 위치해로 적분하기 위해 반복 적인 해법으로 찾아야한다.

$$\Delta \mathbf{e} = \mathbf{e}_{goal} - \mathbf{e}_{current}$$
$$\Delta \mathbf{\theta} = J^{+} \Delta \mathbf{e}$$
(35)
$$\mathbf{\theta}_{current} = \mathbf{\theta}_{previous} + \Delta \mathbf{\theta}$$

4.3 해의 정확성 비교

역기구학 해의 정확성 비교는 로봇 팔 말단의 목표 위치와 자세 명령 e가 주어졌을 때의 역기 구학을 해석한 후, 역기구학 해석을 통하여 얻은 관절의 각도 0를 순기구학 알고리즘의 입력으로 사용하여 나온 관절의 각도해를 로봇 팔 말단의 목표 위치 및 자세 명령과 비교하였다.

Fig. 5-6 은 비교하고자 하는 두 알고리즘에 동 일하게 로봇 팔 말단 명령을 주었을 때의 역기구 학 해와 말단의 위치 오차를 나타내었다. 로봇 팔 말단의 최종 위치 오차는 Table 2 에 수치적으 로 비교하였다. 기존의 의사역행렬법에 의한 결 과와 등각 기하대수를 이용한 역기구학 해석법의 결과를 비교하였는데, 근소하게 본 연구에서 제 안한 역기구학 해석법이 우수하다는 것을 볼 수 있다.

Fig. 6 Inverse kinematics solution using CGA

Table 2 Target position entor fing		Tab	le 2	Target	position	error	m	
------------------------------------	--	-----	------	--------	----------	-------	---	--

	х	У	z	Error		
Reference	0.4	0.1	1.1	0		
Pseudo inv.	0.402430	0.092087	1.105122	0.009734		
Using CGA	0.399881	0.099999	1.100066	0.000136		

4.4 연산시간 비교

기존의 의사역행렬법과의 정확한 연산시간 비 교를 위해 동일한 RTOS 시스템에서 LabVIEW 를 이용하여 수행하였다. 먼저 테스트 위치와 자세를 Table 3 과 같이 준비하여 각 방법으로 1000 회 반 복하고 평균 연산시간을 측정하였다. 이는 연산시 간을 구함에 있어서 프로그램 로딩 및 결과를 출 력 시간 변동을 줄이기 위한 것이다. 다만, 의사역 행렬법의 경우에 반복적인 연산을 통해 위치해를 도출하기 때문에 연산시간의 직접적인 비교하기에 는 적절하지 못하므로 하나의 Δθ 를 연산하는 시 간을 측정하였다. 결론적으로 Table 4 에서 보듯이 등각 기하대수를 이용한 역기구학 해석기법이 의사 역행렬법보다 빠름을 알 수 있다.

Table 2	Torgat	nosition	Q.	ariantation	for	varifiantian
Table 5	Target	position	α	orientation	101	vermeation

Target position		Target orientation		
Х	0.4 m	theta	0 deg	
Y	0.1 m	theta	90 deg	
Z	1.1 m	theta	0 deg	

T 1 1 4	0	•	C		
Table 4	(omnai	ncon c	st comi	nuting	fimes
Table +	Compa	13011 (putting	unics
				- U	

	Pseudo Inverse	IK using CGA
평균계산시간*	179.033 usec	93.137 usec
상대적 시간	1.922	1

5. 결론

본 논문에서는 다양한 수학적 도구들을 하나로 통합하여 직관적으로 이해하기 쉬운 Conformal Geometric Algebra 를 이용하여 7-자유도 인간형 로 봇 팔의 역기구학 해석에 관한 연구를 수행하였다.

4 장에서 수행한 시뮬레이션 결과를 분석하였 을 때 다음과 같은 결론을 이끌어 낼 수 있었다.

우선 로봇 팔의 물성치를 고려한 동역학 관련 연산을 수행하였음에도 기존의 방법들에 비해 만 족할 만한 연산 성능을 이끌어 내었다.

또한 연산시간이 감소하였음에도 해의 정확성 은 비슷한 결과를 도출할 수 있었다. 그리고 로 봇 팔의 각 관절에 가해지는 부하가 최소가 되도 록 하여 로봇이 이동 중에 안정적인 자세를 유지 하면서 다양한 작업을 수행하도록 하는 알고리즘 을 고안하였다.

후 기

본 논문은 지식경제부 우수제조기술연구센서 (ATC)사업 (과제번호 20100000002171 - 차세대 협업 생산 로봇을 위한 다자유도 Robot Arm 및 응 용기술 개발)의 지원에 의해 수행되었습니다.

참고문헌

- Baillieul, J., "Kinematic Programming Alternatives for Redundant Manipulators," IEEE International Conference on Robotics and Automation, Vol. 2, pp. 722-728, 1985.
- Liegeois, A., "Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms," IEEE Trans. Sys. Man and Cybernetics, Vol. 7, No. 12, pp. 868-871, 1977.
- Whitney, D. E., "The Mathematics of Coordinated Control of Prostheses and Manipulators," DTIC Document, pp. 207-220, 1972.
- Tolani, D., Goswami, A., and Badler, N. I., "Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs," Graphical Models, Vol. 62, No. 5, pp. 353-388, 2000.
- Hildenbrand, D., Lange, H., Stock, F., and Koch, A., "Efficient Inverse Kinematics Algorithm Based on Conformal Geometric Algebra Using Reconfigurable Hardware," GRAPP Conference Madeira, 2008.
- Hildenbrand, D., "Geometric Computing in Computer Graphics Using Conformal Geometric Algebra," Computers & Graphics, Vol. 29, No. 5, pp. 795-803, 2005.
- Hildenbrand, D., Bayro-Corrochano, E., and Zamora, J., "Advanced Geometric Approach for Graphics and Visual Guided Robot Object Manipulation," IEEE International Conference on Robotics and Automation, pp. 4727-4732, 2005.
- Hildenbrand, D., Fontijne, D., Perwass, C., and Dorst, L., "Geometric Algebra and Its Application to Computer Graphics," EUROGRAPHICS, 2004.
- Zamora, J. and Bayro-Corrochano, E., "Inverse Kinematics, Fixation and Grasping Using Conformal Geometric Algebra," IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 4, pp. 3841-3846, 2004.

- 10. Park, H. W., "Design and control of a redundant
 - manipulator for humanoid robot," M.Sc. Thesis, Mechanical Engineering, KAIST, 2002.
- Moon, I. K., "Inverse kinematics for improving repeatability and manipulability of redundant robot arms," M.Sc. Thesis, Mechanical Design Engineering, Hanyang University, 2000.
- Lee, J. H., "A Study on Optimal Path Planning of 4-DOF Redundant Robot Based on Dexterity," M.Sc. Thesis, Mechanical Engineering, Yonsei University, 2000.
- Dorst, L., "Honing Geometric Algebra for Its Use in the Computer Sciences," Geometric Computing with Clifford Algebra, pp. 127-151, 2001.
- 14. Lasenby, J., Fitzgerald, W. J., Lasenby, A. N., and Doran, C. J. L., "New Geometric Methods for Computer Vision: An Application to Structure and Motion Estimation," International Journal of Computer Vision, Vol. 26, No. 3, pp. 191-213, 1998.
- Li, H., Hestenes, D., and Rockwood, A., "Generalized Homogeneous Coordinates for Computational Geometry," Geometric Computing with Clifford Algebra, Vol. 24, pp. 27-60, 2001.
- Fowles, G. R. and Cassiday, G. L., "Analytical Mechanics," Saunders College Pub., pp. 423-425, 1999.
- 17. Haykin, S. S., "Adaptive Filter Theory," Prentice Hall, pp. 483-532, 1991.
- Wong, D. S. H. and Sandler, S. I., "A Theoretically Correct Mixing Rule for Cubic Equations of State," AIChE Journal, Vol. 38, No. 5, pp. 671-680, 1992.