DOI QR코드

DOI QR Code

갈락토스-글루코스 혼합당 수소 발효

Hydrogen Fermentation of the Galactose-Glucose Mixture

  • Cheon, Hyo-Chang (Department of Environmental Engineering, Daegu University) ;
  • Kim, Sang-Youn (Department of Environmental Engineering, Daegu University)
  • 투고 : 2012.08.01
  • 심사 : 2012.08.24
  • 발행 : 2012.08.31

초록

Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.

키워드

참고문헌

  1. S. K. Khanal, W. H. Chen, L. Li, and S. Sung, "Biological hydrogen production : Effects of pH and intermediate products", International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 1123-1131.
  2. S. H. Kim, S. K. Han, and H. S. Shin, "Feasibility of biohydrogen production by anaerobic co-digestion of food waste sewage sludge", International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 1607-1616. https://doi.org/10.1016/j.ijhydene.2004.02.018
  3. H. Argun, and F. Kargi, "Bio-hydrogen production by different operational modes of dark and photofermentation: An overview", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 7443-7459. https://doi.org/10.1016/j.ijhydene.2011.03.116
  4. J. Mathews, and G. Wang, "Methbolic pathway engineering for enhanced biohydrogen production", International Journal of Hydrogen Energy, Vol. 34, 2009, pp. 7404-7416. https://doi.org/10.1016/j.ijhydene.2009.05.078
  5. C. C. Chen, and C. Y. Lin, "Biohydrogen production using an up-flow anaerobic sludge blanket reactor", Advances In Environmental Research, Vol. 7, 2003, pp. 695-699. https://doi.org/10.1016/S1093-0191(02)00035-7
  6. J. Lay, Y. J. Lee, and T. Noike, "Feasibility of biological hydrogen production from organic fraction of municipal solid waste", Water Research, Vol. 33, 1999, pp. 2579-2586. https://doi.org/10.1016/S0043-1354(98)00483-7
  7. D. S. Scott, "Hydrogen-the case for inevitability", International Journal of Hydrogen Energy, Vol. 29, 2004, pp. 225-227. https://doi.org/10.1016/S0360-3199(03)00126-5
  8. C. Y. Lee, S. W. Lee, S. J. Hwang, "Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 6, 2011, pp. 765-771.
  9. D. H. Kim, M. K. Lee, S. Y. Lim, and M. S. Kim, "Dark Fermentative Hydrogen Production using the Wastewater Generated from Food Waste Recycling Facilities", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 326-332.
  10. M. Ike, D. Inoue, T. Miyano, T. T. Liu, "Microbial population dynamics during start-up of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project", Bioresour Technology, Vol. 101, No. 11, 2010, pp. 3952-3957. https://doi.org/10.1016/j.biortech.2010.01.028
  11. O. S. Kim, H. N. Son, D. H. Kim, D. J. Jeon, Y. W. Rhee, M. S. Kim, "Biohydrogen Production from Food Waste by Two-Stage (Lactate+Photo)-Fermentation Process", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 333-339.
  12. I. A. Panagiotopoulos, R. R. Bakker, T. Vrije, and E. G. Koukios, "Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds", Bioresource Technology, Vol. 102, 2011, pp. 11204-11211. https://doi.org/10.1016/j.biortech.2011.09.090
  13. J. I. Park, J. Lee, S. J. Sim, and J. H. Lee, "Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora", Biotechnology and Bioprocess Engineering, Vol. 14, 2009, pp. 307-315. https://doi.org/10.1007/s12257-008-0241-y
  14. E. Y. Park, S. M. Jeong, Y. J. Kim, and D. H. Lee, "Review on Hydrolysis of the Macroalgae for Production of Bioethanol", Journal of Korea Society of Waste Management, Vol. 29, No 4, 2012, pp. 323-333.
  15. K. S. Kim, J. H. Kim, M. G. Shin, G. M. Jo, S. Y. Kim, J. K. Shim, S. B. Kim, Y. J. Kim, M. H. Lee, S. B. Lee, and H. J. Ryu, "Feasibility Study on the Utilization of Algae for the Bio- Energy Production", The Ministry of Knowledge Economy, 2007-N-BI17-P-01, 2007, pp. 16-31.
  16. A. Jensen, "Present and future needs for algae and algal products", Hydrobiologia, Vol. 260/261, 1993, pp. 15-23. https://doi.org/10.1007/BF00048998
  17. http://fs.fips.go.kr/index.jsp (assess date: November 28, 2011)
  18. Ministry for Food,, Agriculture and Fisheries, Korea, R&D Roadmap (Feasibility Study) for Commercial Culture of Marine Algae and its Use as a Bioenergy Source, No. 11-1541000-000242-01, 2009.
  19. J. H. Park, J. J. Yoon, H. D. Park, Y. J. Kim, D. J. Lim, and S. H. Kim, "Feasibility of biohydrogen production from Gelidium amansii", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 13997-14003. https://doi.org/10.1016/j.ijhydene.2011.04.003
  20. J. H. Park, J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon, and Y. J. Kim, "Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation", Bioresource Technology, Vol. 108, 2012, pp. 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
  21. L. F. Bisson, D. M. Coons, A. L. Kruckeberg, and D. A. Lewis, "Yeast Sugal Transporters", The Journal of Steroid Biochemistry and Molecular Biology, Vol. 28, No. 4, 1993, pp. 259-308.
  22. APHA, AWWA, WEF. Standard methods for the examination of Water and Wastewater. 20th ed. Washington D.C., USA, 1998.
  23. S. Ozcan, and M. Johnston, "Function and Regulation of Yeast Hexose Transporters", Microbiology and Molecular Biology Reviews, Vol. 63, No. 3, 1999, pp. 554-569.
  24. K. Kimata, H. Takahashi, T. Inada, P. Postma, and H. Aiba, "cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli", Biochemistry, Vol. 94, 1997, pp. 12914-12919.
  25. A. Fangkum, and A. Reungsang, "Biohydrogen production from ugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 8687-8696. https://doi.org/10.1016/j.ijhydene.2010.05.119
  26. J. D. Keating, J. Robinson, R. J. Bothast, J. N. Saddler, and S. D. Mansfield, "Characterization of a unique ethanologenic yeast capable of fermenting galactose", Enzyme Microb. Technol., Vol. 35, 2004, pp. 242-253. https://doi.org/10.1016/j.enzmictec.2004.04.015
  27. R. J. Trumby, "Glucose repression in the yeast Saccharomyces cerevisiae", Molecular Microbiology, Vol. 6, 1992, pp. 15-21. https://doi.org/10.1111/j.1365-2958.1992.tb00832.x
  28. D. H. Kim, and M. S. Kim, "Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures", International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 2021-2027. https://doi.org/10.1016/j.ijhydene.2011.07.043
  29. L. Jianzheng, R. Nanqi, L. Baikun, Q. Zhi, and H. Junguo, "Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture", Bioresour Technol, Vol. 99, 2008, pp. 6528-6537. https://doi.org/10.1016/j.biortech.2007.11.072
  30. R. S. Prakasham, P. Brahmaiah, T. Sathish, and R. K. Sambasiva, "Fermentative biohydrogen production by mixed anaerobic consortia: impact of glucose to xylose ratio", International Journal of Hydrogen Energy, Vol. 34, 2009, pp. 9354-9361. https://doi.org/10.1016/j.ijhydene.2009.09.104
  31. C. Y. Lin, and C. H. Lay, "A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge micoflora", International Journal of Hydrogen Energy, Vol. 30, 2005, pp. 285-292. https://doi.org/10.1016/j.ijhydene.2004.03.002