DOI QR코드

DOI QR Code

Biphasic effects of TGFβ1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells

  • Li, Rui-Dong (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • Deng, Zhong-Liang (Department of Orthopaedic Surgery, the Second Affiliated Hospital, Chongqing Medical University) ;
  • Hu, Ning (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • Liang, Xi (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • Liu, Bo (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • Luo, Jin-Yong (Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center) ;
  • Chen, Liang (Department of Orthopaedic Surgery, the Second Affiliated Hospital, Chongqing Medical University) ;
  • Yin, Liangjun (Department of Orthopaedic Surgery, the Second Affiliated Hospital, Chongqing Medical University) ;
  • Luo, Xiaoji (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • Shui, Wei (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • He, Tong-Chuan (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University) ;
  • Huang, Wei (Department of Orthopaedic Surgery, the First Affiliated Hospital, Chongqing Medical University)
  • Received : 2012.03.12
  • Accepted : 2012.06.05
  • Published : 2012.09.30

Abstract

We have found that the previously uncharacterized bone morphogenetic protein-9 (BMP9) is one of the most osteogenic factors. However, it is unclear if BMP9 cross-talks with $TGF{\beta}1$ during osteogenic differentiation. Using the recombinant BMP9 adenovirus, we find that low concentration of rh$TGF{\beta}1$ synergistically induces alkaline phosphatase activity in BMP9-transduced C3H10T1/2 cells and produces more pronounced matrix mineralization. However, higher concentrations of $TGF{\beta}1$ inhibit BMP9-induced osteogenic activity. Real-time PCR and Western blotting indicate that BMP9 in combination with low dose of $TGF{\beta}1$ potentiates the expression of later osteogenic markers osteopontin, osteocalcin and collagen type 1 (COL1a2), while higher concentrations of $TGF{\beta}1$ decrease the expression of osteopontin and osteocalcin but not COL1a2. Cell cycle analysis reveals that $TGF{\beta}1$ inhibits C3H10T1/2 proliferation in BMP9-induced osteogenesis and restricts the cells in $G_0/G_1$ phase. Our findings strongly suggest that $TGF{\beta}1$ may exert a biphasic effect on BMP9-induced osteogenic differentiation of mesenchymal stem cells.

Keywords

References

  1. Panetta, N. J., Gupta, D. M., Quarto, N. and Longaker, M. T. (2009) Mesenchymal cells for skeletal tissue engineering. Panminerva Med. 51, 25-41.
  2. Peng, Y. Kang, Q., Cheng, H., Li, X., Sun, M. H., Jiang, W., Luu, H. H., Park, J. Y., Haydon, R. C. and He, T. C. (2003) Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J. Cell. Biochem. 90, 1149-1165. https://doi.org/10.1002/jcb.10744
  3. Luu, H. H., Song, W. X., Luo, X., Manning, D., Luo, .J, Deng, Z. L., Sharff, K. A., Montag, A. G., Haydon, R. C. and He, T. C. (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res. 25, 665-677. https://doi.org/10.1002/jor.20359
  4. Deng, Z. L., Sharff, K. A., Tang, N., Song, W. X., Luo, J., Luo, X., Chen, J., Bennett, E., Reid, R., Manning, D., Xue, A., Montag, A. G., Luu, H. H., Haydon, R. C. and He, T. C. (2008) Regulation of osteogenic differentiation during skeletal development. Front. Biosci. 13, 2001-2021. https://doi.org/10.2741/2819
  5. Gautschi, O. P., Frey, S. P. and Zellweger, R. (2007) Bone morphogenetic proteins in clinical applications. ANZ J. Surg. 77, 626-631. https://doi.org/10.1111/j.1445-2197.2007.04175.x
  6. Kanayama, M., Hashimoto, T., Shigenobu, K., Yamane, S., Bauer, T. W. and Togawa D. (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31, 1067-1074. https://doi.org/10.1097/01.brs.0000216444.01888.21
  7. Hering, S., Isken, E., Knabbe, C., Janott, J., Jost, C., Pommer, A., Muhr, G., Schatz, H., and Pfeiffer, A. F. (2001) TGFbeta1 and TGFbeta2 mRNA and protein expression in human bone samples. Exp. Clin. Endocrinol. Diabetes 109, 217-226. https://doi.org/10.1055/s-2001-15109
  8. Janssens, K., ten Dijke, P., Janssens, S. and Van Hul, W. (2005) Transforming growth factor-beta1 to the bone. Endocr. Rev. 26, 743-774. https://doi.org/10.1210/er.2004-0001
  9. Yamada, T., Kamiya, N., Harada, D. and Takagi, M. (1999) Effects of transforming growth factor-beta1 on the gene expression of decorin, biglycan, and alkaline phosphatase in osteoblast precursor cells and more differentiated osteoblast cells. Histochem. J. 31, 687-694. https://doi.org/10.1023/A:1003855922395
  10. Kassem, M., Kveiborg, M. and Eriksen, E. F. (2000) Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur. J. Clin. Invest. 30, 429-437. https://doi.org/10.1046/j.1365-2362.2000.00645.x
  11. Knippenberg, M., Helder, M. N., Doulabi, B. Z., Bank, R. A., Wuisman, P. I. and Klein-Nulend, J. (2009) Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells. Tissue Eng. Part A 15, 2213-2225. https://doi.org/10.1089/ten.tea.2007.0184
  12. Alliston, T., Choy, L., Ducy, P., Karsenty, G. and Derynck, R. (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 20, 2254-2272. https://doi.org/10.1093/emboj/20.9.2254
  13. Maeda, S., Hayashi, M., Komiya, S., Imamura, T. and Miyazono, K. (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 23, 552-563. https://doi.org/10.1038/sj.emboj.7600067
  14. Canalis, E., Economides, A. N. and Gazzerro, E. (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218-235. https://doi.org/10.1210/er.2002-0023
  15. Reznikoff, C. A., Brankow, D. W. and Heidelberger, C. (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 33, 3231-3238.
  16. Peng, Y., Kang, Q., Luo, Q., Jiang, W., Si, W., Liu, B. A., Luu, H. H., Park, J. K., Li, X., Luo, J., Montag, A. G., Haydon, R. C. and He, T. C. (2004) Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 32941-32949. https://doi.org/10.1074/jbc.M403344200
  17. Luo, Q., Kang, Q., Si, W., Jiang, W., Park, J. K., Peng, Y., Li, X., Luu, H. H., Luo, J., Montag, A. G., Haydon, R. C. and He, T. C. (2004) Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 55958-55968. https://doi.org/10.1074/jbc.M407810200
  18. Tang, N., Song, W. X., Luo, J., Luo, X., Chen, J., Sharff, K. A., Bi, Y., He, B. C., Huang, J. Y., Zhu, G. H., Su, Y. X., Jiang, W., Tang, M., He, Y., Wang, Y., Chen, L., Zuo, G. W., Shen, J., Pan, X., Reid, R. R., Luu, H. H., Haydon, R. C. and He, T. C. (2009) BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta- catenin signalling. J. Cell Mol. Med. 13, 2448-2464. https://doi.org/10.1111/j.1582-4934.2008.00569.x
  19. Chen, L., Jiang, W., Huang, J., He, B. C., Zuo, G. W., Zhang, W., Luo, Q., Shi, Q., Zhang, B. Q., Wagner, E. R., Luo, J., Tang, M., Wietholt, C., Luo, X., Bi, Y., Su, Y., Liu, B., Kim, S. H., He, C. J., Hu, Y., Shen, J., Rastegar, F., Huang, E., Gao, Y., Gao, J. L., Zhou, J. Z., Reid, R. R., Luu, H. H., Haydon, R. C., He, T. C. and Deng, Z. L (2010). Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J. Bone Miner. Res. 25, 2447-2459. https://doi.org/10.1002/jbmr.133
  20. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A. and Suda, T. (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell. Biol. 127, 1755-1766. https://doi.org/10.1083/jcb.127.6.1755
  21. Peng, M., Chen, S., Fang, W. and Yu, X. (2010) Effects of leptin on the expression of alpha1 (I) collagen gene in human osteoblast-like MG63 cells. Biochem. Cell Biol. 88, 683-686. https://doi.org/10.1139/O10-007
  22. Couchourel, D., Aubry, I., Delalandre, A., Lavigne, M., Martel-Pelletier, J., Pelletier, J. P. and Lajeunesse, D. (2009) Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 60, 1438-1450. https://doi.org/10.1002/art.24489
  23. Khoshniat, S., Bourgine, A., Julien, M., Petit, M., Pilet, P., Rouillon, T., Masson, M., Gatius, M., Weiss, P., Guicheux, J. and Beck, L. (2011) Phosphate-dependent stimulation of MGP and OPN expression in osteoblasts via the ERK1/2 pathway is modulated by calcium. Bone 48, 894-902. https://doi.org/10.1016/j.bone.2010.12.002
  24. Centrella, M., Massague, J. and Canalis, E. (1986) Human platelet-derived transforming growth factor-beta stimulates parameters of bone growth in fetal rat calvariae. Endocrinology 119, 2306-2312. https://doi.org/10.1210/endo-119-5-2306
  25. Robey, P. G., Young, M. F., Flanders, K. C., Roche, N. S., Kondaiah, P., Reddi, A. H., Termine, J. D., Sporn, M. B. and Roberts, A. B. (1987) Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J. Biol. Chem. 105, 457-463.
  26. Hock, J. M., Canalis, E. and Centrella, M. (1990) Transforming growth factor-beta stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology 126, 421-426. https://doi.org/10.1210/endo-126-1-421
  27. Chen, T. L. and Bates, R. L. (1993) Recombinant human transforming growth factor beta 1 modulates bone remodeling in a mineralizing bone organ culture. J. Bone Miner Res. 8, 423-434.
  28. Noda, M. and Rodan, G. A. (1987) Type beta transforming growth factor (TGF beta) regulation of alkaline phosphatase expression and other phenotype-related mRNAs in osteoblastic rat osteosarcoma cells. J. Cell. Physiol. 133, 426-437. https://doi.org/10.1002/jcp.1041330303
  29. Antosz, M. E., Bellows, C. G. and Aubin, J. E. (1989) Effects of transforming growth factor beta and epidermal growth factor on cell proliferation and the formation of bone nodules in isolated fetal rat calvaria cells. J. Cell. Physiol. 140, 386-395. https://doi.org/10.1002/jcp.1041400225
  30. Centrella, M., McCarthy, T. L. and Canalis, E. (1987) Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J. Biol. Chem. 262, 2869-2874.
  31. Si, W., Kang, Q., Luu, H. H., Park, J. K., Luo, Q., Song, W. X., Jiang, W., Luo, X., Li, X., Yin, H., Montag, A. G., Haydon, R. C. and He, T. C. (2006) CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol. Cell. Biol. 26, 2955-2964. https://doi.org/10.1128/MCB.26.8.2955-2964.2006
  32. Luo, J., Deng, Z. L., Luo, X., Tang, N., Song, W. X., Chen, J., Sharff, K. A., Luu, H. H., Haydon, R. C., Kinzler, K. W., Vogelstein, B. and He, T. C. (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236-1247. https://doi.org/10.1038/nprot.2007.135
  33. Zhou, L., An, N., Jiang, W., Haydon, R., Cheng, H., Zhou, Q., Breyer, B., Feng, T. and He, T. C. (2002) Fluorescence-based functional assay for Wnt/beta-catenin signaling activity. Biotechniques 33, 1126-1128, 1130, 1132 passim.
  34. Kang, Q., Song, W. X., Luo, Q., Tang, N., Luo, J., Luo, X., Chen, J., Bi, Y., He, B. C., Park, J. K., Jiang, W., Tang, Y., Huang, J., Su, Y., Zhu, G. H., He, Y., Yin, H., Hu, Z., Wang, Y., Chen, L., Zuo, G. W., Pan, X., Shen, J., Vokes, T., Reid, R. R., Haydon, R. C., Luu, H. H. and He, T. C. (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev. 18, 545-559. https://doi.org/10.1089/scd.2008.0130
  35. Luo, X., Chen, J., Son, W. X., Tang, N., Luo, J., Deng, Z. L., Sharff, K. A., He, G., Bi, Y., He, B. C., Bennett, E., Huang, J., Kang, Q., Jiang, W., Su, Y., Zhu, G. H., Yin, H., He, Y., Wang, Y., Souris, J. S., Chen, L., Zuo, G. W., Montag, A. G., Reid, R. R., Haydon, R. C., Luu, H. H. and He, T. C. (2008) Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab. Invest. 88, 1264-1277. https://doi.org/10.1038/labinvest.2008.98
  36. Sharff, K. A., Song, W. X., Luo, X., Tang, N., Luo, J., Chen, J., Bi, Y., He, B. C., Huang, J., Li, X., Jiang, W., Zhu, G. H., Su, Y., He, Y., Shen, J., Wang, Y., Chen, L., Zuo, G. W., Liu, B., Pan, X., Reid, R. R., Luu, H. H., Haydon, R. C. and He, T. C. (2009) Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. J. Biol. Chem. 284, 649-659. https://doi.org/10.1074/jbc.M806389200
  37. Cheng, H., Jiang, W., Phillips, F. M., Haydon, R. C., Peng, Y., Zhou, L., Luu, H. H., An, N., Breyer, B., Vanichakarn, P., Szatkowski, J. P., Park, J. Y. and He, T. C. (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J. Bone Joint Surg. Am. 85-A, 1544-1552.
  38. Kang, Q., Sun, M. H., Cheng, H., Peng, Y., Montag, A. G., Deyrup, A. T., Jiang, W., Luu, H. H., Luo, J., Szatkowski, J. P., Vanichakarn, P., Park, J. Y., Li, Y., Haydon, R. C. and He, T. C. (2004) Characterization of the distinct orthotopic bone- forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 11, 1312-1320. https://doi.org/10.1038/sj.gt.3302298

Cited by

  1. BMP signaling in mesenchymal stem cell differentiation and bone formation vol.06, pp.08, 2013, https://doi.org/10.4236/jbise.2013.68A1004
  2. Functions and mechanisms of intermittent negative pressure for osteogenesis in human bone marrow mesenchymal stem cells vol.9, pp.4, 2014, https://doi.org/10.3892/mmr.2014.1968
  3. TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0089179
  4. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy vol.47, pp.3, 2014, https://doi.org/10.5483/BMBRep.2014.47.3.289
  5. Differential effects of amnion and chorion membrane extracts on osteoblast-like cells due to the different growth factor composition of the extracts vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182716
  6. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in Transforming Growth Factor Beta 1–modulated Growth, Collagen Turnover, and Differentiation of Stem Cells from Apical Papilla of Human Tooth vol.41, pp.8, 2015, https://doi.org/10.1016/j.joen.2015.03.022
  7. Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity vol.8, pp.3, 2013, https://doi.org/10.1088/1748-6041/8/3/035011
  8. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14 vol.6, pp.1, 2016, https://doi.org/10.1038/srep21176
  9. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration vol.102, pp.8, 2014, https://doi.org/10.1002/jbm.a.34961
  10. Bone morphogenetic protein 9 stimulates callus formation in osteoporotic rats during fracture healing vol.15, pp.5, 2017, https://doi.org/10.3892/mmr.2017.6302
  11. Inhibition of transforming growth factor-β signaling pathway enhances the osteogenic differentiation of unrestricted somatic stem cells vol.119, pp.11, 2018, https://doi.org/10.1002/jcb.27209