DOI QR코드

DOI QR Code

PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression

  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Sohn, Eun-Jeong (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Young-Nam (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eom, Seon-Ae (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Yoon, Ga-Hyeon (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Lee, Sang-Hyun (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Hyun-Sook (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Cho, Yoon-Shin (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2012.04.18
  • Accepted : 2012.05.07
  • Published : 2012.09.30

Abstract

P18, a member of the INK4 family of cyclin-dependent kinase inhibitors, is a tumor suppressor protein and plays a key cell survival role in a variety of human cancers. Under pathophysiological conditions, the INK4 group proteins participate in novel biological functions associated with neuronal diseases and oxidative stress. Parkinson's disease (PD) is characterized by loss of dopaminergic neurons, and oxidative stress is important in its pathogenesis. Therefore, we examined the effects of PEP-1-p18 on oxidative stress-induced SH-SY5Y cells and in a PD mouse model. The transduced PEP-1-p18 markedly inhibited 1-methyl-4-phenyl pyridinium-induced SH-SY5Y cell death by inhibiting Bax expression levels and DNA fragmentation. Additionally, PEP-1-p18 prevented dopaminergic neuronal cell death in the substantia nigra of a 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine-induced PD mouse model. These results indicate that PEP-1-p18 may be a useful therapeutic agent against various diseases and is a potential tool for treating PD.

Keywords

References

  1. Dawson, T. M. and Dawson, V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822. https://doi.org/10.1126/science.1087753
  2. Eriksen, J. L., Wszolek, Z. and Petrucelli, L. (2005) Molecular pathogenesis of Parkinson disease. Arch. Neurol. 62, 353-357. https://doi.org/10.1001/archneur.62.3.353
  3. Morales-Garcia, J. A., Redondo, M., Alonso-Gil, S., Gil, C., Perex, C., Martinez, A., Santos, A. and Perez-Castillo, A. (2011) Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS ONE 6, e17240. https://doi.org/10.1371/journal.pone.0017240
  4. Dauer, W. and Przedborski, S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3
  5. Warner, T. T. and Schapira, A. H. (2003) Genetic and environmental factors in the cause of Parkinson's disease. Ann. Neurol. 53, S16-S25. https://doi.org/10.1002/ana.10487
  6. Eriksen, J. L., Przedborski, S. and Petrucelli, L. (2005) Gene dosage and pathogenesis of Parkinson's disease. Trends Mol. Med. 11, 91-96. https://doi.org/10.1016/j.molmed.2005.01.001
  7. Tasaki, Y., Omura, T., Yamada, T., Ohkubo, T., Suno, M., Iida, S., Sakaguchi, T., Asari, M., Shimizu, K. and Matsubara, K. (2010) Meloxicam protects cell damage from 1-methyl-4-phenyl pyridinium toxicity via the phosphatidylinositol 3-kinase/Akt pathway in human dopaminergic neuroblastoma SH-SY5Y cells. Brain Res. 1344, 25-33. https://doi.org/10.1016/j.brainres.2010.04.085
  8. Subbareddy, M., Sudharsana, R. A., Soumya, P., Ted, P., Kazimierz, W., Anne, Z., Mehdi, E., Kamala, D. M., Emilia, W. and Marek, L. (2007) Cell survival, cell death and cell cycle pathway are interconnected: Implications for cancer therapy. Drug Resist. Updates 10, 13-29. https://doi.org/10.1016/j.drup.2007.01.003
  9. Grant, S. and Roberts, J. D. (2003) The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist. Updates 6, 15-26. https://doi.org/10.1016/S1368-7646(02)00141-3
  10. Schwartz, G. K. and Shah, M. A. (2005) Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408-9421. https://doi.org/10.1200/JCO.2005.01.5594
  11. Eduardo, T. C., Maria, E. S., Julieta, M. C., Mariela, C. M., Abel, L. C., Pablo, F. S. and Maria, F. O. (2007) INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59, 419-426. https://doi.org/10.1080/15216540701488358
  12. Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  13. Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176. https://doi.org/10.1038/nbt1201-1173
  14. Eum, W. S., Kim, D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004) In vivo protein transduction: Biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669. https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  15. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068. https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  16. Ahn, E. H., Kim, D. W., Kang, H. W., Shin, M. J., Won, M. H., Kim, J., Kim, D. J., Kwon, O. S., Kang, T. C., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicol. 276, 192-197. https://doi.org/10.1016/j.tox.2010.08.004
  17. An, J. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Lee, M. J., Jeong, M. S., Kim, D. W., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 275, 1296-1308. https://doi.org/10.1111/j.1742-4658.2008.06291.x
  18. Kim, M. J., Kim, D. W., Yoo, K. Y., Sohn, E. J., Jeong, H. J., Kang, H. W., Shin, M. J., Ahn, J. J., Kwon, S. W., Kim, Y. N., Won, M. H., Cho, S. W., Park, J., Eum, W. S. and Choi, S. Y. (2010) Protective effects of transduced PEP-1-Frataxin protein on oxidative stress-induced neuronal cell death. J. Neurol. Sci. 298, 64-69. https://doi.org/10.1016/j.jns.2010.08.016
  19. Lee, S. H., Kim, D. W., Back, S. S., Hwang, H. S., Park, E. Y., Kang, T. C., Kwon, O. S., Park, J. H., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2011) Transduced Tat-annexin protein suppresses inflammation-associated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. BMB Rep. 44, 484-489. https://doi.org/10.5483/BMBRep.2011.44.7.484
  20. Shin, M. J., Lee, Y. P., Kim, D. W., An, J. J., Jang, S. H., Cho, S. M., Sheen, S. H., Lee, H. R., Kweon, H. Y., Kang, S. W., Lee, K. G., Park, J., Eum, W. S., Cho, Y. J. and Choi, S. Y. (2010) Transduced PEP-1-AMPK inhibits the LPS-induced expression of COX-2 and iNOS in Raw 264.7 cells. BMB Rep. 43, 40-45. https://doi.org/10.5483/BMBRep.2010.43.1.040
  21. Egleton, R. D. and Davis, T. P. (1997) Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18, 1431-1439. https://doi.org/10.1016/S0196-9781(97)00242-8
  22. Dietz, G. P. (2010) Cell-penetrating peptide technology to delivery chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechnol. 11, 167-174. https://doi.org/10.2174/138920110790909731
  23. Kim, S. Y., Kim, M. Y., Mo, J. S., Park, J. W. and Park, H. S. (2007) SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion ($MPP^+$)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling. Neurosci. Lett. 413, 132-136. https://doi.org/10.1016/j.neulet.2006.11.074
  24. Chung, Y. C., Ko, H. W., Bok, E., Park, E. S., Huh, S. H., Nam, J. H. and Jin, B. K. (2010) The role of neuroinflammation on the pathogenesis of Parkinson's disease. BMB Rep. 43, 225-232. https://doi.org/10.5483/BMBRep.2010.43.4.225
  25. Brouckaert, G., Kalai, M., Saelens, X. and Vandenabeels, P. (2005) Apoptotic pathways and their regulation. In: Los, M., Gibson. S. B. (eds.), Apoptotic pathway as target for novel therapies in cancer and other diseases. Springer Academic Press, New York, USA.
  26. Finkel, E. (2001) The mitochondrian: is it central to apoptosis? Science 292, 624-626. https://doi.org/10.1126/science.292.5517.624
  27. Maddika, S., Mendoza, F. J., Fauff, K., Zamzow, C. R., Paranjothy, T. and Los, M. (2006) Cancer-selective therapy of the further: apoptin and its mechanism of action. Cancer Biol. Ther. 5, 10-19. https://doi.org/10.4161/cbt.5.1.2400
  28. Deng, X., Gao, F. and May JR, W. S. (2003) Bcl-2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 102, 3179-3185. https://doi.org/10.1182/blood-2003-04-1027
  29. Araki, T., Mikami, T., Tanji, H., Matsubara, M., Imai, Y., Mizugaki, M. and Itoyama, Y. (2001). Biochemical and immunohistological changes in the brain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse. Eur. J. Pharm. Sci. 12, 231-238. https://doi.org/10.1016/S0928-0987(00)00170-6
  30. Bradford, M. A. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cited by

  1. Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson’s Disease Model vol.37, pp.3, 2014, https://doi.org/10.14348/molcells.2014.2314
  2. Neuroprotective effect of PEP-1-peroxiredoxin2 on CA1 regions in the hippocampus against ischemic insult vol.1840, pp.7, 2014, https://doi.org/10.1016/j.bbagen.2014.03.003
  3. Down-regulation of MAPK/NF-κB signaling underlies anti-inflammatory response induced by transduced PEP-1-Prx2 proteins in LPS-induced Raw 264.7 and TPA-induced mouse ear edema model vol.23, pp.2, 2014, https://doi.org/10.1016/j.intimp.2014.09.008
  4. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury vol.67, 2014, https://doi.org/10.1016/j.freeradbiomed.2013.10.815
  5. PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model vol.47, pp.10, 2014, https://doi.org/10.5483/BMBRep.2014.47.10.286
  6. Effect of respiratory syncytial virus on the growth of hepatocellular carcinoma cell-lines vol.48, pp.10, 2015, https://doi.org/10.5483/BMBRep.2015.48.10.268
  7. PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson's disease vol.1840, pp.6, 2014, https://doi.org/10.1016/j.bbagen.2014.01.004
  8. Phosphorylation of the N-terminal domain of p48 Ebp1 by CDK2 is required for tumorigenic function of p48 vol.54, pp.11, 2015, https://doi.org/10.1002/mc.22203
  9. PEP-1–ribosomal protein S3 protects dopaminergic neurons in an MPTP-induced Parkinson's disease mouse model vol.55, 2013, https://doi.org/10.1016/j.freeradbiomed.2012.11.008
  10. The efficacy of chimeric vaccines constructed with PEP-1 and Ii-Key linking to a hybrid epitope from heterologous viruses vol.43, pp.5, 2015, https://doi.org/10.1016/j.biologicals.2015.06.005
  11. PEP-1-PON1 Protein Regulates Inflammatory Response in Raw 264.7 Macrophages and Ameliorates Inflammation in a TPA-Induced Animal Model vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0086034
  12. PEP-1–SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages vol.63, 2013, https://doi.org/10.1016/j.freeradbiomed.2013.06.005
  13. Tat-biliverdin reductase A inhibits inflammatory response by regulation of MAPK and NF-κB pathways in Raw 264.7 cells and edema mouse model vol.63, pp.2, 2015, https://doi.org/10.1016/j.molimm.2014.09.003
  14. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells vol.22, pp.1, 2014, https://doi.org/10.1016/j.intimp.2014.06.022