
Copyright 2012. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 6, No. 3, September 2012, pp. 193-206

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le

School of Information Management, The Victoria University of Wellington, Wellington, New Zealand van.t.le@vuw.ac.nz

Sebastian Link* and Mozhgan Memari

Department of Computer Science, The University of Auckland, Auckland, New Zealand

s.link@auckland.ac.nz, mmem525@aucklanduni.ac.nz

Abstract
Keys play a fundamental role in all data models. They allow database systems to uniquely identify data items, and there-

fore, promote efficient data processing in many applications. Due to this, support is required to discover keys. These

include keys that are semantically meaningful for the application domain, or are satisfied by a given database. We study

the discovery of keys from SQL tables. We investigate the structural and computational properties of Armstrong tables

for sets of SQL keys. Inspections of Armstrong tables enable data engineers to consolidate their understanding of seman-

tically meaningful keys, and to communicate this understanding to other stake-holders. The stake-holders may want to

make changes to the tables or provide entirely different tables to communicate their views to the data engineers. For such

a purpose, we propose data mining algorithms that discover keys from a given SQL table. We combine the key mining

algorithms with Armstrong table computations to generate informative Armstrong tables, that is, key-preserving seman-

tic samples of existing SQL tables. Finally, we define formal measures to assess the distance between sets of SQL keys.

The measures can be applied to validate the usefulness of Armstrong tables, and to automate the marking and feedback

of non-multiple choice questions in database courses.

Category: Smart and intelligent computing

Keywords: Algorithm; Complexity; Armstrong database; Key; Soundness; Completeness; Mining; SQL

I. INTRODUCTION

In databases, keys play a fundamental role in under-

standing both the structure and semantics. Given an SQL

table schema, a key is a collection of columns whose val-

ues uniquely identify rows. That is, no two different rows

have matching total values in each of the key columns.

The concept of a key is essential for many other data

models, including semantic models [1-4], object models

[5], description logics [6], XML [7-9], RDF [10], and

OWL [11].

The discovery of semantically meaningful SQL keys is

a crucial task in many areas of modern data management,

for example, in data modeling, database design, query

optimization, indexing, and data integration [12]. This arti-

cle is concerned with methods for semi-automated schema-

driven and automated data-driven SQL key discovery.

There is great demand in industry for such methods,

because they vastly simplify the job of the database

administrator and thereby decrease the overall cost of

database ownership. The discovery of composite keys is

especially difficult, because the number of possible keys

Received 13 June 2012, Accepted 20 August 2012

*Corresponding Author

†An earlier version of this paper has been published at DASFAA 2012.

Open Access http://dx.doi.org/10.5626/JCSE.2012.6.3.193 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 194 Van Bao Tran Le et al.

increases exponentially with the number of columns [3,

13]. Because of the industry demand, the goal is to pro-

vide practical algorithms that exhibit good typical case

behavior. Industry-leading data modeling and design tools,

such as the ERwin data modeler, emphasize the need for

good test data in order to validate the semantics of the

models they produce [14]. In our context, test data is con-

sidered good if it assists data engineers with the discov-

ery of semantically meaningful keys. This calls for

algorithms that produce test data which satisfy the keys

currently perceived as semantically meaningful and vio-

late the keys currently perceived as semantically mean-

ingless.

A. Running Example

Consider a simple database that collects basic informa-

tion about the weekly schedule of courses. That is, we

have a schema SCHEDULE with columns C_ID, L_Name,

as well as Time and Room. The schema stores the time

(including the weekday) and room in which a lecturer

(identified by their lecturer name L_Name) gives a course

(identified by its C_ID). An SQL definition may be given

as follows:

The table schema specifies additional assertions. The

primary key forces rows over SCHEDULE to be NOT
NULL in the C_ID and Time columns, and to be unique on

their {C_ID, Time} projections. That is, no two different

rows must have matching values in both the C_ID col-

umn and the Time column. A team of data engineers may

wonder if the semantics of the application domain has

been captured by this SQL definition. They decide to

generate some good test data to discuss their current

understanding with the domain experts, who do not under-

stand database terminology. Therefore, the data engineers

produce the data sample in Table 1, where ni denotes
occurrences of the no information null marker.

The domain experts express concern about rows 1 and

3: Ullman teaches both 11301 and 78200 in the red room

on Monday at 10 am. After some discussion, the domain

experts emphasize that different courses should not be

taught by the same lecturer in the same room at the same

time. As a consequence, the team of engineers decides to

specify the uniqueness constraint (UC) u(Time, L_Name,

Room). They produce the data sample in Table 2 to dis-

cuss their new understanding with the domain experts.

The domain experts direct the engineers’ attention to

rows 1 and 3 where Ullman teaches both 11301 and 78200

on Monday at 10 am. After exchanging some ideas, the

experts agree that lecturers must not teach different

courses at the same time.

Moreover, from rows 1 and 4 of the data sample in

Table 2, experts notice that both 11301 and 78200 are

taught on Monday at 10am in the red room. It turns out

that no two different courses must be taught at the same

time in the same room. Therefore, the UC u(Time, L_Name,

Room) is replaced by the two stronger UCs u(Time,

L_Name) and u(Time, Room). The example shows the

potential benefit of investigating good sample data for the

discovery of semantically meaningful SQL keys. As a

revised SQL table schema, the team of data engineers

specify

While this approach appears to be very beneficial, the

Table 1. An Armstrong table for SCHEDULE

C_ID Time L_Name Room

11301 Mon, 10 am Ullman Red

11301 Tue, 02 pm Ullman Red

78200 Mon, 10 am Ullman Red

99120 Wed, 04 pm ni ni

ni: no information.

Table 2. Another Armstrong table

C ID Time L_Name Room

11301 Mon, 10 am Ullman Red

11301 Tue, 02 pm Ullman Red

78200 Mon, 10 am Ullman ni

99120 Mon, 10 am ni Red

ni: no information.

Table 3. Updated table

C ID Time L Name Room

11301 Mon, 10 am Ullman Red

11301 Tue, 02 pm Ullman Red

78200 Mon, 10 am Fagin Blue

99120 Wed, 04 pm ni ni

ni: no information.

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le et al. 195 http://jcse.kiise.org

question remains what constitutes good test data, and

how to create it (automatically). In some situations the

domain experts may feel very confident and would like to

have the opportunity to modify values in the test data to

reflect their domain knowledge, or provide the entire test

data themselves. In such cases, and other situations, the

data engineers require automated means to discover a

representation of the keys that are satisfied by the test

data. For example, when the domain experts inspect the

data sample in Table 1, they may simply suggest using

the data sample in Table 3 instead, with the updated val-

ues indicated by bold font.

On input of this table, a constraint mining algorithm

would return NOT NULL constraints on C_ID and Time,
as well as the three UCs u(C_ID, Time), u(L_Name, Time),

and u(Room, Time). This, again, leads to the definition of

SCHEDULE'. The question remains how to discover the

SQL keys that are satisfied by a given SQL table.

B. Contributions

In this paper we will establish detailed answers to the

two questions above. As our first main contribution we

discuss the schema-driven discovery of SQL keys that are

semantically meaningful for a given application domain.

For this purpose we investigate the well-known concept

of Armstrong databases for the class of SQL keys. Arm-

strong databases formalize the concept of good test data

in the sense that they satisfy the set Σ of keys currently
perceived as semantically meaningful, and violate all

keys that are not implied by Σ. We characterize when a

given SQL table is Armstrong with respect to a given set

Σ of SQL keys. This characterization allows us to estab-
lish an algorithm that generates good test data for arbi-

trary sets of SQL keys. While we demonstrate that the

problem of computing such Armstrong tables is precisely

exponential in the number of column headers, our algo-

rithm produces an Armstrong table whose size is at most

quadratic. We also show that there are situations where

the size of the Armstrong table our algorithm produces is

exponentially smaller than the size of the keys given.

Both extreme cases result from very specific situations,

which are very unlikely to occur in practice. Indeed, in

most situations that do occur in practice, our algorithm

will produce Armstrong tables whose size is in the same

order of magnitude as the size of the keys given.

As a second main contribution we discuss the data-

driven discovery of SQL keys. For this purpose we estab-

lish two algorithms that compute the set of minimal SQL

keys satisfied by a given SQL table. While the problem

generally requires exponential time, our algorithms show

good best case behavior. As a third main contribution we

combine the schema-driven and data-driven approach to

increase the effectiveness of SQL key discovery. Given a

real world data set, we apply the data-driven approach to

identify the minimal SQL keys satisfied by this data set,

and then apply the schema-driven approach to compute

an Armstrong table for the set of these minimal keys. The

Armstrong table is called informative as it contains only

rows of the original data set, is much smaller in size, and

satisfies the same SQL keys.

As the final contribution, we define formal measures

that can be applied to 1) empirically validate the usefulness

of our Armstrong tables for the acquisition of semanti-

cally meaningful SQL keys, and 2) automate the feed-

back and marking of database exam questions.

C. Organization

We summarize related work in Section II, and provide

preliminary definitions in Section III. We investigate struc-

tural and computational properties of Armstrong tables

for the class of SQL keys in Section IV. In Section V we

study the SQL key mining problem. Section VI combines

the data-driven and schema-driven approaches to the dis-

covery of SQL keys. Our formal measures of usefulness

and their applications are discussed in Section VII. Finally,

in Section VIII, we conclude and briefly comment on

future work.

II. RELATED WORK

Data dependencies have been studied thoroughly in the

relational model of data, cf. [15-17]. Dependencies are

essential to the design of the target database, the mainte-

nance of the database during its lifetime, and all major

data processing tasks [15, 17]. These applications also

provide strong motivation for developing data mining

algorithms to discover the data dependencies that are sat-

isfied by a given database. Armstrong databases are a

useful design aid for data engineers, which can help with

the consolidation of data dependencies [18, 19] and

schema mappings [20], the design of databases [21] and

the creation of concise test data [22].

In the relational model of data, the class of keys is sub-

sumed by the class of functional dependencies. The struc-

tural and computational properties of Armstrong relations

have been investigated in the relational model of data for

the class of keys [3, 23], and the more general class of

functional dependencies [21, 24]. The mining of keys and

functional dependencies in relations has also received

considerable attention in the relational model [12, 25, 26].

The concept of informative Armstrong databases was intro-

duced in [22] as semantic samples of existing databases.

One of the most important extensions of Codd’s basic

relational model [27] is incomplete information [28, 29].

This is mainly due to the high demand for the correct

handling of such information in real-world applications.

Approaches to deal with incomplete information com-

prise incomplete relations, or-relations or fuzzy relations.

In this paper we focus on incomplete bags, and the most

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 196 Van Bao Tran Le et al.

popular interpretation of a null marker as “no informa-

tion” [29, 30]. This is the general case of SQL tables

where duplicate rows and null markers are permitted to

occur in columns that are specified as null-able. Relations

are idealized special SQL tables where no duplicate rows

can occur and all columns are specified NOT NULL.
Recently, Armstrong tables have been investigated for

their combined class of SQL keys and functional depen-

dencies [31]. In this article, we establish optimizations

that arise from the focus on the sole class of SQL keys.

This provides insight into the trade-off between the

expressiveness of data dependency classes and the struc-

tural and computational properties of Armstrong tables.

The insight can be used by data engineers to make a more

informed decision about the complexity of the design

process for the target database. For example, it may

appear that the most important requirements of an appli-

cation domain can already be captured by SQL keys

alone, without the need for functional dependencies. In

this case, engineers can utilize the algorithms developed

in the current article, which result in computations that

are more resource-efficient than those developed for the

combined class of keys and functional dependencies [31].

Note that Hartmann et al. [1] studies Codd keys, which

require tuples to have unique and total projections on key

attributes. In contrast, the present article studies SQL

keys, which require total tuples to have unique projec-

tions on key attributes. Hartmann et al. [1] does also not

discuss any key mining algorithms or measures to assess

the difference of key sets, nor does it discuss informative

Armstrong databases. To the best of the authors’ knowl-

edge, no previous work has addressed the mining of keys

from SQL tables. Our results reveal that the methods

developed for the idealized special case of relations [26]

can be adapted to the use for SQL tables. We are also

unaware of any studies related to informative Armstrong

databases except [22], measures that capture the differ-

ence between sets of keys, nor their utilization for assess-

ing the usefulness of Armstrong tables or database exam

questions.

The present article is an extension of the conference

paper [32]. The present article contains all the proofs of

our results as well as additional motivation and discus-

sion. In addition, the concept of informative Armstrong

tables was not discussed in the conference paper.

III. THE SQL TABLE MODEL

In this section we introduce the basic definitions neces-

sary and sufficient for the development of our results in

subsequent sections. In particular, we introduce a model

that is very similar to SQL’s data definition capabilities.

The interpretation of null marker occurrences as “no

information” follows the SQL interpretation, and the for-

mal model introduced by Zaniolo [29]. The class of SQL

keys under consideration is the exact class of uniqueness

constraints defined in the SQL standard [33].

Let H = {H1, H2, ...} be a countably infinite set of sym-

bols, called column headers or headers for short. A table

schema is a finite non-empty subset T of H. Each header

H of a table schema T is associated with a countably infi-

nite domain dom(H) of the possible values that can occur

in column H. To encompass partial information, every

column can have a null marker, denoted by ni ∈ dom(H).
The intention of ni is to signify “no information”.

For header sets X and Y, we may write XY for X Y. If

X = {H1,. . . , Hm}, then we may write H1
... Hm for X. In

particular, we may write simply H to represent the single-

ton {H}. A row over T (T-row or simply row, if T is

understood) is a function r : T → H∈T dom(H) with r(H)

∈ dom(H) for all H ∈ T. The null marker occurrence r(H)

= ni associated with a header H in a row r means that

there is no information about r(H). That is, r(H) may not

exist or r(H) exists but is unknown. For X ⊆ T let r(X)

denote the restriction of the row r over T to X. A table t

over T is a finite multi-set of rows over T. For a row r

over T and a set X ⊆ T, r is said to be X-total if for all H ∈
X, r(H) ≠ ni. Similarly, a table t over T is said to be X-

total, if every row r of t is X-total. A table t over T is said

to be a total table if it is T-total.

A UC over a table schema T is an expression u(X)

where X ⊆ T. A table t over T is said to satisfy the UC
u(X) over T, denoted by |=t u(X), if for all r1, r2 ∈ t, if

r1(X) = r2(X) and r1, r2 are X-total, then r1 = r2. The

semantics is that of SQL’s UC [33], and it reduces to that

of a key for total tables [15].

Following Atzeni and Morfuni [30] a null-free sub-

schema (NFS) over the table schema T is an expression

nfs(Ts) where Ts ⊆ T. The NFS nfs(Ts) over T is satisfied

by a table t over T, denoted by |=t nfs(Ts), if and only if t is

Ts-total. SQL allows the specification of column headers

as NOT NULL. NFSs occur in everyday database prac-
tice: the set of headers declared NOT NULL forms an

NFS over the underlying table schema.

In schema design and maintenance data dependencies

are normally specified as semantic constraints on the

tables intended to be instances of the schema. During the

design process or the lifetime of a database one usually

needs to determine further dependencies, which are

implied by the given ones. Let T be a table schema,

nfs(Ts) an NFS, and Σ {ϕ} be a set of UCs over T. We

say that Σ implies ϕ in the presence of nfs(Ts), denoted by

Σ |=Ts
 ϕ, if every Ts-total table t over T that satisfies Σ also

satisfies ϕ. If Σ does not imply ϕ in the presence of

nfs(Ts) we may also write Σ |≠Ts
 ϕ. Let Σ*

Ts
= {ϕ |Σ|=Ts

 ϕ}

be the semantic closure of Σ. If we do not want to empha-

size the presence of the NFS nfs(Ts) we may simply write

Σ |= ϕ, Σ |≠ ϕ or Σ∗, respectively. The next result explains

why minimal UCs are important. Indeed, for a set Σ
{u(X)} of UCs, and an NFS nfs(Ts) over T we call u(X)

minimal if and only if Σ |=Ts
 u(X) and for all u(Y) over T

⊃

⊃

⊃

⊃

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le et al. 197 http://jcse.kiise.org

where Σ |=Ts
 u(Y) and Y ⊆ X we have Y = X.

THEOREM 1. Let T be a table schema, nfs(Ts) an NFS,

and Σ {ϕ} be a set of UCs over T. Then, Σ implies ϕ in
the presence of nfs(Ts) if and only if there is some u(Y) ∈
Σ such that Y ⊆ X.

Proof. Suppose first that there is some u(Y) ∈ Σ such
that Y ⊆ X. We need to show that Σ implies ϕ in the pres-

ence of nfs(Ts). Assume to the contrary that there is some

Ts-total table t that satisfies Σ, but violates ϕ. Conse-

quently, there are two different Ts-total rows r1, r2 ∈ t

such that r1(X) = r2(X). Since Y ⊆ X we conclude that t

violates u(Y) ∈ Σ, a contradiction. Consequently, Σ implies
ϕ in the presence of nfs(Ts).

For the reverse direction we present the contraposition.

That is, we assume that for all u(Y) ∈ Σ we have Y X,

and show that under this assumption Σ does not imply ϕ

in the presence of nfs(Ts). For the latter, we construct a Ts-

total table t that satisfies Σ but violates ϕ. Let t be the
table over T consisting of two rows r1 and r2 over T where

r1 and r2 are XTs-total and r1(X) = r2(X), and r1(H) = ni =
r2(H) for all H ∈ T − XTs, and r1(H) ≠ r2(H) for all H ∈ (T

− X) Ts. The construction ensures that t violates u(X).

Let u(Y) ∈ Σ. We have assumed that Y X, that is, Y

(T − X) ≠ . Again, the construction ensures that t satis-

fies u(Y). This concludes the proof. □

In the relational model of data, keys enjoy a simple

axiomatization [17] by two axioms. The set axiom says

that for every relation schema R, the set R of all attributes

forms a key. The superkey rule states that for every set K

of attributes in R that forms a key over R, every superset

K' ⊆ R of K also forms a key over R. For SQL we have

just shown that this axiomatization becomes even sim-

pler. The proof of Theorem 1 has just shown that the

superkey rule is sound and complete for the implication

of SQL keys. In particular, the set axiom is no longer

sound since we can have two duplicate tuples in a multiset.

EXAMPLE 1. We can capture the SQL table schema of

the running example as the table schema SCHEDULE =

CTLR with SCHEDULEs = CT. Let Σ consist of the two
UCs u(CT) and u(LTR). It follows that Σ does not imply

any of the following UCs: u(CLR), u(LT) nor u(TR). For

instance, the SCHEDULEs-total table in Table 2 satisfies Σ
and violates every of the three UCs. As an application of

Theorem 1 we see that neither of CLR, LT nor TR is a

superset of CT or LTR. □

IV. SCHEMA-DRIVEN SQL KEY DISCOVERY

In this section we investigate the structural and compu-

tational properties of suitable data to test the semantic

meaningfulness of uniqueness constraints over the SQL

table schemata. For this purpose, we use Armstrong tables

to formalize the notion of suitable test data. Having intro-

duced the concepts of strong agree sets and anti-keys, we

characterize when an arbitrarily given SQL table is Arm-

strong for an arbitrarily given set of uniqueness con-

straints. The characterization is then used to compute

Armstrong tables. Finally, we derive results on the time

and space complexity associated with the computation of

Armstrong tables.

A. Key Concepts

The official concept of an Armstrong database was

originally introduced by Fagin [16]. We require our tables

to be Armstrong with respect to uniqueness constraints

and the NFS. Intuitively, an Armstrong table satisfies the

given constraints and violates the constraints in the given

class that are not implied by the given constraints. This

results in the following definition.

DEFINITION 1. Let Σ be a set of UCs, and nfs(Ts) an
NFS over table schema T. A table t over T is said to be

Armstrong for Σ and nfs(Ts) if and only if i) t satisfies Σ,
ii) t violates every UC ϕ ∉ Σ*

Ts
, iii) t is Ts-total, and iv) for

every H ∈ T − Ts, t is not H-total. □

Through the use of Theorem 1, it is easy to see that a

table t is Armstrong for Σ and nfs(Ts) if and only if 1) for
all u(X) over T, t satisfies u(X) if and only if there is some

u(Y) ∈ Σ such that Y ⊆ X, and 2) for all nfs(T's) over T, t

satisfies nfs(T's) if and only if T's ⊆ Ts.

EXAMPLE 2. Let SCHEDULE = CTLR with SCHEDULEs =

CT. Let Σ consist of the two UCs u(CT) and u(LTR). The
data sample in Table 2 is Armstrong for Σ and nfs(SCHED-
ULEs). For example, it violates the UCs: u(CLR), u(LT)

and u(TR), as well as every NFS nfs(T's) where T's is not

contained in SCHEDULEs. □

A natural question to ask is how we can characterize

the structure of tables that are Armstrong. With this in

mind, we introduce the formal notion of strong agree sets

for pairs of distinct rows, and tables.

DEFINITION 2. For two rows r1 and r2 over table

schema T where r1 ≠ r2 we define the strong agree set of r1
and r2 as the set of all column headers over T on which r1
and r2 have a matching total value, i.e., ag

s(r1,r2) = {H ∈
T | r1(H) = r2(H) and r1(H) ≠ ni ≠ r2(H)}. Furthermore,
the strong agree set of a table t over table schema T is

defined as ags(t) = {ags(r1, r2) | r1,r2 ∈ t ∧ r1 ≠ r2}.

EXAMPLE 3. Let SCHEDULE = CTLR with SCHEDULEs =

CT. Let Σ consist of the two UCs u(CT) and u(LTR). Let t
denote the data sample in Table 2. The strong agree set of

t consists of CLR, LT, TR, L, R, and T. □

For a table t to be Armstrong for Σ and nfs(Ts), t must

violate all UCs u(X) not implied by Σ in the presence of
nfs(Ts). Instead of violating all UCs, it suffices to violate

those ones that are maximal with the property that they

⊃

⊆

⊃

⊆

⊃ 0

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 198 Van Bao Tran Le et al.

are not implied by Σ in the presence of nfs(Ts). This moti-
vates the following definition.

DEFINITION 3. Let Σ be a set of UCs, and nfs(Ts) an

NFS over table schema T. The set Σ-1 of all anti-keys with

respect to Σ and nfs(Ts) is defined as Σ
-1 = {a(X) | X ⊆ T ∧

Σ |≠Ts
 u(X) ∧ H ∈ (T − X)(Σ |=Ts

 u(XH))}. □

Hence, an anti-key for Σ is given by a maximal set of

column headers, which does not form a uniqueness con-

straint implied by Σ.

EXAMPLE 4. Let SCHEDULE = CTLR with SCHEDULEs =

CT. Let Σ consist of the two UCs u(CT) and u(LTR). The
set Σ-1 of anti-keys with respect to Σ and SCHEDULEs con-

sists of a(CLR), a(LT) and a(TR). □

B. Structure of Armstrong Tables

The concepts from the last sub-section are sufficient to

establish a characterization of Armstrong tables for the

class of UCs over SQL table schemata.

THEOREM 2. Let Σ be a set of UCs, and nfs(Ts) an NFS

over the table schema T. For all tables t over T it holds

that t is an Armstrong table for Σ and nfs(Ts) if and only if
the following three conditions are satisfied: for all a(X) ∈
Σ-1 we have X ∈ ags(t); for all u(X) ∈ Σ and for all Y ∈
ags(t) we have X Y; total(t) = {H ∈ T | r ∈ t(r(H) ≠
ni)} = Ts.

Proof. First, we show that the three conditions are suf-

ficient for t to be an Armstrong table for Σ and nfs(Ts).

Suppose that t is such that the three conditions are satis-

fied. It follows immediately from the last condition that t

satisfies nfs(T's) if and only if T's ⊆ Ts. Let u(X) ∈ Σ. If
there were two rows r1, r2 ∈ t such that r1 ≠ r2 and X ⊆
ags(r1,r2) = Y, then Y ∈ ags(t). This, however, would vio-
late the second condition. Hence, t satisfies u(X). Since

u(X) ∈ Σ was an arbitrary choice we conclude that t satis-
fies Σ. Let u(Y) ∉ Σ*. Then there is some a(X) ∈ Σ-1 such

that Y ⊆ X holds. From the first condition we conclude

that Y ⊆ ags(r1,r2) for some r1, r2 ∈ t with r1 ≠ r2. Conse-
quently, t violates every uniqueness constraint not implied

by Σ.
Showing that the three conditions hold necessarily

whenever t is an Armstrong table for Σ and nfs(Ts) still

remains. Suppose that t is an Armstrong table for Σ and
nfs(Ts). The last condition follows immediately from the

fact that t satisfies nfs(T's) if and only if T's ⊆ Ts. Since t

satisfies Σ there cannot be any Y ∈ ags(t) and u(X) ∈ Σ
such that X ⊆ Y holds. We conclude that the second con-

dition is satisfied. It remains to show that the first condi-

tion is satisfied, too. Let a(X) ∈ Σ-1. We need to show that

X ∈ ags(t). From a(X) ∈ Σ-1 it follows that u(X) ∉ Σ*. As t

violates u(X) it follows that there are r1, r2 ∈ t such that r1
≠ r2 and X ⊆ Y = ags(r1,r2). Also, from a(X) ∈ Σ-1 it fol-

lows that for all H ∈ T − X we have u(XH) ∈ Σ*, and thus

that t satisfies u(XH). Suppose that there is some H ∈ Y −
X. Then t satisfies u(XH) and, therefore, r1(H) = ni =
r2(H) or r1(H) ≠ r2(H). This, however, is a contradiction
as H ∈ Y = ags(r1,r2). Consequently, X = Y ∈ ags(t). □

EXAMPLE 5. Let SCHEDULE = CTLR with SCHEDULEs =

CT. Let Σ consist of the two UCs u(CT) and u(LTR), and
let t denote the data sample in Table 2. Recall from the

previous examples that Σ-1 = {a(CLR), a(LT), a(TR)}, and

ags(t) = {CLR, LT, TR, L, R, T}. Since t satisfies the three

conditions of Theorem 2, it follows that t is an Armstrong

table for Σ and SCHEDULEs. □

C. Computation of Armstrong Tables

We will now use the characterization of Theorem 2 to

compute Armstrong tables for an arbitrarily given set Σ
of UCs and an arbitrarily given NFS nfs(Ts) over an arbi-

trarily given table schema T. A great part of the computa-

tion is devoted to determining the set Σ-1. For this

purpose, we borrow concepts from hyper-graphs. Indeed,

to compute Σ-1 we generate the simple hyper-graph H =

(V, E) with the vertex set V = T and the set E = {X | u(X) ∈
Σ} of hyper-edges. In fact, based on Theorem 1 we

assume without loss of generality that Σ consists of mini-
mal UCs only. If not, then we remove all those UCs from

Σ that are not minimal. From this we obtain Σ-1 = {a(T −
X) | X ∈ Tr(H)} where Tr(H) denotes the minimal trans-

versals of the hyper-graph H, i.e., the set of minimal sets

X ⊆ T that have a non-empty intersection with every

hyper-edge of H [34].

LEMMA 1. Let Σ be a set of UCs over table schema T.
Then, Σ-1 = {a(T − X) | X ∈ Tr(H)}.

Proof. Recall that Tr(H) = {X ⊆ T | u(Z) ∈ Σ(Z X ≠
) ∧ (Y ⊆ X(u(Z) ∈ Σ(Z Y ≠)) Y = X)}.

We show first that if X ∈ Tr(H), then a(T − X) ∈ Σ-1.

First, it follows that Σ |≠Ts
 u(T − X) since otherwise there

would be some u(Z) ∈ Σ such that Z ⊆ T − X. This, how-
ever, would mean that Z X = , which contradicts the

hypothesis that X ∈ Tr(H). It remains to show that for all

H ∈ X, Σ |=Ts
 u((T − X)H). Assume the opposite, i.e., there

is some H ∈ X such that Σ |≠Ts
 u((T − X)H). Then, there

cannot be any u(Z) ∈ Σ such that Z ⊆ (T − X)H = T − (X −

H). Hence, for all u(Z) ∈ Σ we have Z (X − H) ≠ .

This, however, contradicts the minimality of X ∈ Tr(H).

We have shown that a(T − X) ∈ Σ-1.

Now, we show that if a(X) ∈ Σ-1, then T − X ∈ Tr(H).

From a(X) ∈ Σ-1 we conclude that Σ |≠Ts
 u(X). Hence, for

all u(Z) ∈ Σ((T − X) Z ≠). From a(X) ∈ Σ-1 we know

that for all H ∈ T − X, Σ |=Ts
 u(XH). Hence, for all H ∈ T

− X there is some u(Z) ∈ Σ such that Z ⊆ XH. Thus, for all

H ∈ T − X there is some u(Z) ∈ Σ such that (T − XH) Z

= . That is, T − X ∈ Tr(H). □

Now, we have a complete strategy for computing Arm-

strong tables, which we summarize in Algorithm 1. For

 ∀

⊆ ∀

 ∀ ⊃

0 ∃ ∀ ⊃ 0 ⇒

⊃ 0

⊃ 0

⊃ 0

⊃

0

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le et al. 199 http://jcse.kiise.org

each column header H, let cH,0, cH,1, ... denote mutually

distinct domain values from dom(H). Lines 2-4 deal with

the special case where Σ contains the empty key u(),

saying that a table can have at most one row. Here, we

just need to return a table consisting of one row with null

marker occurrences in columns which are null-able. Oth-

erwise, we start off with a row r0 with total values in

every column (line 6). In lines 8 and 9 we use Lemma 1

to compute the set of anti-keys with respect to Σ and
nfs(Ts). In lines 11-15 we introduce for each anti-key a(Y)

a new row ri, which has a strong agree set Y with r0. In

lines 16-20 we may need to introduce an additional row

that has null value occurrences in null-able columns that

do not feature null value occurrences in previously gener-

ated rows.

The correctness of Algorithm 1 follows from Lemma 1

and Theorem 2.

THEOREM 3. On input (T, Σ, nfs(Ts)), Algorithm 1 com-

putes a table t over T that is Armstrong for Σ and nfs(Ts).

Proof. It suffices to verify that the output of Algorithm

1 satisfies the conditions in Theorem 2. Indeed, Lemma 1

reveals that Algorithm 1 computes the anti-keys cor-

rectly. The main construction of Algorithm 1 in lines 11-

15 guarantees that the output satisfies the first condition.

The construction also ensures that every strong agree set

from the output of Algorithm 1 is contained in some anti-

key. This means that no UC from Σ can be contained in
some strong agree set. This shows that the output satisfies

the second condition. Finally, lines 17-19 ensure that the

output satisfies the third condition. □

EXAMPLE 6. Let SCHEDULE = CTLR with SCHEDULEs

= CT. Let Σ consist of the two UCs u(CT) and u(LTR). On
input (SCHEDULE, Σ, SCHEDULEs), Algorithm 1 would

compute the following Armstrong table:

A suitable value substitution yields the data sample in

Table 2. □

D. Complexity Considerations

In this subsection, we investigate properties regarding

the space and time complexity for computing Armstrong

tables. We will demonstrate that the user-friendly repre-

sentation of a set of SQL keys in the form of an Arm-

strong table comes, in the worst case, at a price. In fact,

the number of rows in a minimum-sized Armstrong table

can be exponential in the total number of column headers

that occur in Σ. Because of this result we cannot, in the
worst case, design an algorithm for generating Armstrong

tables in polynomial time.

1) Worst-case time-complexity

The following result follows straight from Theorem 2

and the correctness of Algorithm 1.

PROPOSITION 1. Let Σ be a set of UCs and nfs(Ts) be
some NFS over table schema T. Let t be an Armstrong

table for Σ and nfs(Ts). Then |Σ
-1| ≤ |ags(t)| ≤ (|t|2).

Proof. The first condition of Theorem 2 states that for

all a(X) ∈ Σ-1 we have X ∈ ags(t). If we add the second

condition of Theorem 2, then we derive that for all Y ∈
ags(t) there is at most one X ∈ Σ-1 such that X ⊆ Y . This

shows that

|Σ-1| ≤ |ags(t)|.

Finally, |ags(t)| ≤ (|t|2) since every distinct pair of distinct
tuples in t has precisely one agree set. □

Let the size of an Armstrong table be defined as the

number of rows that it contains. It is a practical question

to ask how many rows a minimum-sized Armstrong table

requires. An Armstrong table t for Σ and nfs(Ts) is said to

be minimum-sized if there is no Armstrong table t' for Σ
and nfs(Ts) such that |t'| < |t|. That is, for a minimum-sized

Armstrong table for Σ and nfs(Ts) there is no Armstrong

Algorithm 1 Armstrong table computation

0

C_ID Time L_Name Room

c
H,0 c

T,0 c
L,0 c

R,0

cH,0 cT,1 cL,0 cR,0

cH,1 cT,0 cL,0 ni

c
H,2 c

T,0 ni c
R,0

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 200 Van Bao Tran Le et al.

table for Σ and nfs(Ts) with a smaller number of rows.

We recall what we mean by precisely exponential [24].

Firstly, it means that there is an algorithm for computing

an Armstrong table, given a set Σ of UCs and an NFS
nfs(Ts), where the running time of the algorithm is expo-

nential in the size of the keys. Secondly, it means that

there is a set Σ of UCs and an NFS nfs(Ts) in which the
number of rows in each minimum-sized Armstrong table

for Σ and nfs(Ts) is exponential.

PROPOSITION 2. The complexity of finding an Arm-

strong table, given a set of UCs and an NFS, is precisely

exponential in the size of the UCs.

Proof. The time complexity of Algorithm 1 is propor-

tional to the time-complexity of computing the set Σ-1 of

anti-keys with respect to Σ and nfs(Ts). The computation

of the anti-keys via the hypergraph transversals in lines 8

and 9 requires time exponential in the size of the UCs

given [35]. Therefore, Algorithm 1 runs in time exponen-

tial in the size of the UCs given.

It remains to show that there is a set Σ of UCs for
which the number of rows in each Armstrong table for Σ
is exponential in the size of the UCs given. According to

Theorem 1 it suffices to find a set Σ of UCs such that Σ-1

is exponential in the size of the UCs. Such a set is given by

Σ = {u(H2i-1, H2i) | i = 1, . . . , n}.

The set Σ-1 consists of those anti-keys that contain pre-

cisely one column header for each element of Σ. There-
fore, Σ-1 contains precisely 2n elements with 2n being the

size of Σ. □

2) Minimum-sized Armstrong tables

Despite the general worst-case exponential complexity

in the size of the keys, Algorithm 1 is a fairly simple

algorithm that is, as we now demonstrate, quite conserva-

tive in its use of time.

PROPOSITION 3. Let Σ be a set of UCs, nfs(Ts) an NFS

over table schema T. Let t be a minimum-sized Armstrong

table for Σ and nfs(Ts). Then .

Proof. The upper bound follows immediately from

Theorem 3. The lower bound follows from Theorem 1. Indeed,

it follows that |Σ-1| ≤ (|t|2). That is, |Σ
-1| ≤ . Conse-

quently, . □

Note the upper bound in Proposition 3. In general, the

focus on UCs can yield Armstrong tables with a substan-

tially smaller number of rows than Armstrong tables for

more expressive classes such as functional dependencies.

The reason is that we do not need to violate any func-

tional dependencies that are not implied by the given set.

In practice, this is desirable for the validation of schemata

known to be in Boyce-Codd normal form, for example.

Such schemata are often the result of entity-relationship

modeling. Applying the algorithm from [31], designed

for UCs and functional dependencies, to our running

example would yield an Armstrong table with 12 rows.

Instead, Algorithm 1, designed for UCs only, produces an

Armstrong table with just 4 rows. In general, we can con-

clude that Algorithm 1 always computes an Armstrong

table of reasonably small size.

COROLLARY 1. On input (T, Σ, nfs(Ts)), Algorithm 1

computes an Armstrong table for Σ and nfs(Ts) whose size
is at most quadratic in the size of a minimum-sized Arm-

strong table for Σ and nfs(Ts). □

3) Size of representations

We show that, in general, there is no superior way of

representing the information inherent in a set of UCs and

a null-free subschema.

THEOREM 4. There is some set Σ of UCs and an NFS
nfs(Ts) such that Σ has size O(n), and the size of a mini-

mum-sized Armstrong table for Σ and nfs(Ts) is O(2n/2).

There is some table schema T, some NFS nfs(Ts) and some

set Σ of UCs over T such that there is an Armstrong table
for Σ and nfs(Ts) where the number of rows is in O(n),

and the size of the minimal UCs implied by Σ in the pres-
ence of nfs(Ts) is in O(2n).

Proof. For the first claim let T = H1, . . . , H2n, Ts = T

and Σ = {u(H2i-1H2i) | i = 1, . . . , n}. Then Σ
-1 = {a(X1 ...

Xn) | i = 1, ... ,n(Xi ∈ {H2i-1, H2i})}.

For the second claim let T = H1 ... H2n, Ts = T and Σ =
{u(X1 ... Xn) | i = 1, . . . , n(Xi ∈ {H2i-1, H2i})}. Then, the

set of minimal UCs implied by Σ is Σ itself. Since Σ-1 =

{a(T − (H2i-1H2i)) | i = 1, . . . , n} there is an Armstrong

table for Σ and nfs(Ts) where the number of rows is in

O(n). □

We can perceive that the representation in form of an

Armstrong table can offer tremendous space savings over

the representation as a UC set, and vice versa. It seems

intuitive to use the representation as Armstrong tables for

the discovery of semantically meaningful constraints, and

the representation as constraint sets for the discovery of

semantically meaningless constraints. This intuition has

been confirmed empirically for the class of functional

dependencies over relations [18].

V. DATA-DRIVEN SQL KEY DISCOVERY

In this section we will establish algorithms for the

automated discovery of uniqueness constraints from given

SQL tables. Such algorithms have direct applications in

schema design, query optimization, and the semantic sam-

pling of databases [22, 26, 31, 36, 37]. In requirements

engineering, for example, these algorithms can be utilized

to discover semantically meaningful uniqueness constraints

1 8 Σ 1–⋅+

2
-------------------------- t Σ 1–

2+≤ ≤

t t 1–()⋅
2

1 8 Σ 1–⋅+

2
-------------------------- t≤

 ∀

 ∀

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le et al. 201 http://jcse.kiise.org

from sample data, which domain experts provide.

A. Mining by Pairwise Comparison of Rows

Our first algorithm gradually inspects all pairs of rows

for the given table, and adjusts the set of minimal UCs

accordingly. More specifically, for every given pair of

different rows r1, r2 (line 3), and for every UC u(X) satis-

fied by the rows inspected so far (line 4), we replace u(X)

by u(XH) whenever r1, r2 violate u(X) and H is a column

in T − X such that r1, r2 satisfy u(XH) (lines 5-10). Lines
12-14 remove non-minimal UCs. Note that the output of

Algorithm 2 is uc(t) = whenever t contains any dupli-

cate rows.

THEOREM 5. On input (T, t), Algorithm 2 computes the

set of minimal UCs satisfied by table t over T in time

O(|T|2 × |t|2 × m2

t) where mt denotes the maximum number

of minimal UCs satisfied by any subset s ⊆ t.

Proof. Algorithm 2 works correctly. A formal proof

can be established using induction over the number of

rows in the input table t. When t contains no row or just

one row, then Algorithm 2 returns uc(t) ={u()} - which

is the unique minimal UC satisfied by t. Suppose we

know that Algorithm 2 correctly computes the set of min-

imal UCs satisfied by table t with n rows, and that t' := t

{r'}. Then, the new row r' is compared with every

other row r in t. Whenever a UC u(X) is violated, it is

replaced by the set of uniqueness constraints u(XH)

where r' and r do not strongly agree on H. This ensures

that table t' satisfies all the uniqueness constraints in

uc(t'). Finally, lines 12-14 ensure that uc(t') does not con-

tain any uniqueness constraints that are not minimal.

For the complexity bound note that there are |t|2 pairs

of rows to inspect. For each pair, uc(t) has at most mt ele-

ments, and for each element there are at most mt · |T|
2

operations to perform. □

EXAMPLE 7. Let t, t' be the data samples over SCHED-

ULE from Tables 2 and 3, respectively. The following

table shows the evolution of the minimal UCs by gradu-

ally adding a new pair of rows until the entire table has

been explored.

The UCs are those explained in the introductory sec-

tion of this article. □

B. Mining by Exploration of Hyper-Graph
Transversals

Again, our next algorithm uses the concept of hyper-

graph transversals. Indeed Algorithm 3 computes the

complements of the strong agree sets for the given input

table (lines 2 and 3). These complements are called weak

disagree sets. Lines 4 and 5 compute the necessary weak

disagree sets, that is, those weak agree sets that are mini-

mal. For the hypergraph where the node set is T and the

edge set consists of all necessary weak disagree sets,

Algorithm 3 uses any (preferably the most efficient) algo-

rithm to compute the set of all minimal transversals of the

hypergraph. Lemma 2 shows that this set contains all

minimal UCs satisfied by the input table t. Algorithm 3 is

compact and benefits from any progress on the popular

problem of computing minimal hypergraph transversals

[34].

The following lemma explains the soundness of Algo-

rithm 3.

LEMMA 2. Let t be a table over table schema T. Then,

for all X ⊆ T, X ∈ Tr(T,nec-disagw(t)) if and only if |=t

u(X) and for all H ∈ X, |≠t u(X − H).

Proof. We begin by showing that the two conditions

are necessary for every X ∈ Tr(T, nec-disagw(t)).

Algorithm 2 Mining of uniqueness constraints by pair-

wise row comparisons

0

0

⊃

rows uc(t) uc(t')

1,2 T T

1,3 TR, TC TR, TL, TC

1,4 TRL,TC TR,TL,TC

2,3 TRL,TC TR,TL,TC

2,4 TRL,TC TR,TL,TC

3,4 TRL,TC TR,TL,TC

Algorithm 3 Mining of uniqueness constraints by exploring

hypergraph transversals

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 202 Van Bao Tran Le et al.

First, if t violated u(X), then there were two rows r1, r2
∈ t such that r1 ≠ r2 and X ⊆ ags(r1, r2). Hence, X dis-

agw(r1, r2) = and there would be some Y ∈ nec-disagw(t)
such that Y ⊆ disagw(r1, r2). Thus, X Y = which con-

tradicts the hypothesis that X ∈ Tr(T, nec-disagw(t)). We

conclude that t satisfies u(X). Suppose there was some H

∈ X such that |=t u(X − H). Then, it would follow that for

all r1, r2 ∈ t such that r1 ≠ r2 it held that (X − H) dis-

agw(r1, r2) ≠ . This, however, would violate the minimal-

ity of X ∈ Tr(T, nec-disagw(t)). Therefore, it holds that for
all H ∈ X, |≠t u(X − H).

Now, we demonstrate that the two conditions are suffi-

cient for X to be in Tr(T, nec-disagw(t)). From |=t u(X) fol-

lows that for all r1, r2 ∈ t where r1 ≠ r2 we have X
disagw(r1, r2) ≠ . From |≠t u(X − H) for all H ∈ X it fol-

lows that for all H ∈ X there are some r1, r2 ∈ t such that
r1 ≠ r2 and X − H ⊆ ags(r1, r2). The last condition means

that (X − H) disagw(r1, r2) = holds. Consequently, for

all H ∈ X there is some Z ∈ nec-disagw(t) such that Z ⊆
disagw(r1, r2), and thus (X − H) Z = . We conclude that

X ∈ Tr(T, nec-disagw(t)). □

THEOREM 6. On input (T, t), Algorithm 3 computes

the set of minimal UCs satisfied by table t over T in

time O(m + n) where m := |T|2 × |t|2 × |nec-disagw(t)| and n :=

.

Proof. The correctness of Algorithm 3 follows directly

from the description of the algorithm and Lemma 2.

The collection nec-disagw(t) can be computed in time

O(m): there are |t|2 pairs of rows to consider, and for each

new set in disagw(t) one can check with at most |T|2 × | nec-

disagw(t)| operations whether the set is also in nec-dis-

agw(t). The computation of the set Tr(T, nec-disagw(t)) of

minimal transversals can be done in time O(n) [34]. Note

that the hypergraph (T, nec-disagw(t)) is simple, that is,

there are no different sets X, Y in nec-disagw(t) where X ⊆
Y holds. □

EXAMPLE 8. Let t, t' be the data samples over SCHED-

ULE from Tables 2 and 3, respectively.

The next table shows the steps for applying Algorithm

3 to (SCHEDULE, t) and (SCHEDULE, t'), respectively.

The UCs are those explained in the introductory sec-

tion of this article. □

VI. INFORMATIVE ARMSTRONG TABLES

Here, we combine the schema- and data-driven approach

to the discovery of SQL keys, as given in Sections IV and

V, respectively. The disadvantage of the schema-driven

approach is that the Armstrong tables, when generated by

our algorithm, contain only artificial values. It is there-

fore doubtful that such tables illustrate the current per-

ceptions of the data engineers to the domain experts who

inspect the table. Of course, the data engineers may sub-

stitute real domain values for the artificial values before

they present the table to the domain experts, or they gen-

erate the Armstrong tables on the basis of some real

domain values. However, the table may still not be a

good representative of the real world application domain,

since some of the combinations of the values may never

occur in practice. We will now outline a solution to this

problem, which overcomes this limitation. Here, the

assumption that is necessary is that some real world data

set t is available, for example, in the form of legacy data.

Under this assumption, we can apply the data-driven

algorithms from Section V to mine the set uc(t) of mini-

mal uniqueness constraints (and NOT NULL constraints)
satisfied by t. Subsequently, we apply the schema-driven

algorithm from Section IV to compute an Armstrong

table t' for uc(t) and the null-free subschema satisfied by

t. The Armstrong table t' can be populated with suitable

rows from t, that is, t' is a subset of the table t. Thus, the

number of rows in t' will be much smaller than the num-

ber of rows in t. Therefore, t' constitutes an invaluable

semantic sample of the data set t, semantic in the sense

that it satisfies the same set of uniqueness and NOT
NULL constraints as t.

t t'

ags(·) CLR, TL, TR, L, R, T CLR, T,

nec-disagw(·) T, CR, CL T, CLR

u(·) CT, TLR CT, LT, RT

⊃

0

⊃ 0

⊃

0

⊃ 0

⊃ 0

⊃ 0

X
X nec-disag

w

t()∈

∏⎝ ⎠
⎛ ⎞2

0

Table 4. Real-world table treal

C_ID Time L_Name Room

COMPSCI 210 Mon, 2 pm Manoharan OGH

COMPSCI 210 Tue, 2 pm Ye OGH

COMPSCI 210 Wed, 1 pm ni OGH

COMPSCI 215 Mon, 3 pm Russello Eng1439

COMPSCI 215 Tue, 3 pm Sheehan Eng1439

COMPSCI 215 Wed, 4 pm Ye MLT1

COMPSCI 220 Tue, 10 am Speidel PLT1

COMPSCI 220 Wed, 11 am ni PLT1

COMPSCI 220 Fri, 1 pm Welch ni

COMPSCI 225 Mon, 11 am ni HSB2

COMPSCI 225 Tue, 12 pm Nies OGH

COMPSCI 225 Fri, 10 am ni ni

COMPSCI 230 Tue, 11 am ni OGH

COMPSCI 230 Thu, 11 am Thomborson OGH

COMPSCI 230 Fri, 2 pm Chang ni

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le et al. 203 http://jcse.kiise.org

DEFINITION 4. Let t be a table over table schema T, and

let C denote a class of constraints. A C-informative Arm-

strong table for t is a table t' over T such that i) t' ⊆ t and
ii) for all constraints ϕ of C over T, t' satisfies ϕ if and

only if t satisfies ϕ. □

In the context of this paper, we are interested in infor-

mative Armstrong tables with respect to the class C of

uniqueness and NOT NULL constraints. For an illustra-
tion of the concept we will now look at a small example.

The data sample treal in Table 4 shows some aspects of

the Semester 2 timetable for 200 level courses in the

Department of Computer Science, the University of

Auckland, one month before the beginning of Semester 2

in 2012. Suppose we would like to compute an informa-

tive Armstrong table for treal with respect to the class of

uniqueness and NOT NULL constraints. We may apply

Algorithm 2 or Algorithm 3 to input (SCHEDULE, t), and

compute the set uc(t) as

{u(Time), u(C_ID,L_Name), u(Room,L_Name)}.

It is not difficult to compute the maximal null-free sub-

schema nfs(Ts) satisfied by treal. We would simply start

with T and gradually inspect row by row in treal. For each

row r we remove any column H ∈ Ts from Ts whenever

r(H) = ni. For the data sample treal from Table 4 we

obtain Ts = {C_ID, Time}. Using the algorithms from

Section IV we compute the set uc(t)-1 of anti-keys as

{a(L_Name), a(C_ID,Room)}.

Now, finding rows in treal whose strong agree sets are

these anti-keys, and which violate any null-free sub-

schema violated by treal still remains. One such table tinf is

shown in Table 5. The first two rows have a strong agree

set {C_ID,Room}, the first and third row have strong

agree {L_Name}, and the fourth row ensures that t' is

total exactly where treal is. The example illustrates the

potential savings in terms of size that informative Arm-

strong tables have over the original data samples. For

original data samples that are large, the informative Arm-

strong tables will be considerably smaller. For example,

in the case of relational databases, De Marchi and Petit

[22] have reported that their informative Armstrong data-

base contained only 0.6% of the tuples in the original

database. One can imagine that the inspection for seman-

tic samples of smaller size is much more effective than

the inspection of the original data set.

VII. EMPIRICAL MEASURES OF USEFULNESS

In this section we describe how the usefulness of

applying Armstrong tables for the discovery of semanti-

cally meaningful SQL keys can be measured. For this

purpose, we will first introduce different measures of use-

fulness, and then describe a detailed example illustrating

how the marking and feedback for non-multiple choice

questions in database courses can be automated.

A. Soundness, Completeness, and Proximity

Measuring the usefulness of applying Armstrong

tables for the discovery of semantically meaningful SQL

keys appears to be non-trivial. However, one may con-

duct a two-phase experiment where database design

teams are given an application domain and are asked to

specify the set of UCs they perceive as semantically

meaningful. In the first phase, they are not given any

help, except natural language descriptions by domain

experts. In the second phase, our algorithm can be used to

produce Armstrong tables for the set of UCs the teams

perceive currently as semantically meaningful. The Arm-

strong tables may be inspected together with the domain

experts, and when new UCs are identified a correspond-

ing Armstrong table may be repeatedly produced. For an

experiment or assignment, one may specify a target set Σt

and possibly a target NFS nfs(T t
s). One may then measure

the quality of the output sets (Σ1, T s
1) of the first phase

against the target sets (Σt, T
t
s), and the output sets (Σ2, T s

2)

of the second phase against the target sets (Σt, T
t
s). If there

is an increase in quality, then Armstrong tables, indeed,

appear to be useful. The question remains how to mea-

sure the quality of the output sets against the target sets.

For this purpose we propose three measures. Let min(Σ)
denote the UCs in Σ that are minimal. Soundness mea-

sures, which of the (minimal) UCs and headers currently

perceived as semantically meaningful, are actually seman-

tically meaningful:

.

If Σ = and Ts = , we define = 1.

Completeness measures, which of the actually semanti-

sound
Σt,Ts

t Σ,Ts()
min Σ() Σt

*
Ts Ts

t
+

min Σ() Ts+
---=

⊃ ⊃

0 0 sound
Σt,Ts

t Σ,Ts()

Table 5. Informative Armstrong table tinf for treal

C_ID Time L_Name Room

COMPSCI 210 Tue, 2 pm Ye OGH

COMPSCI 210 Wed, 1 pm ni OGH

COMPSCI 215 Wed, 4 pm Ye MLT1

COMPSCI 230 Fri, 2 pm Chang ni

Table 6. Armstrong table as feedback

C_ID Time L_Name Room

11301 Mon, 10 am Ullman Red

55505 Mon, 2 pm Ullman Red

55505 Tue, 9 am Fagin Red

55505 Tue, 2 pm Fagin Blue

77707 Tue, 2 pm Gottlob Blue

ni Tue, 2 pm Gottlob Green

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 204 Van Bao Tran Le et al.

cally meaningful (minimal) UCs and headers in NFSs,

are currently perceived as semantically meaningful:

.

If Σt = and T
t
s = , we define = 1.

Finally, proximity prox((Σ, Ts), (Σt, T
t
s)) combines sound-

ness and completeness and is defined as:

.

If Σ = = Σt and Ts = = T t
s , we define prox((Σ,Ts),

(Σt,T
t
s)) = 1.

In database courses one may use Armstrong tables as

automated feedback to solutions. Our measures can be

applied to automatically mark non-multiple choice ques-

tions. This can reduce errors and save time in assessing

course work.

B. A Detailed Example

Again, we will use our running example where SCHED-

ULE consists of the four attributes C(_ID), L(_Name),

R(oom), and T(ime). Suppose we describe, in natural lan-

guage, the application domain to the students of a data-

base course. Then, we ask them to identify the uniqueness

and NOT NULL constraints that they perceive to be
semantically meaningful for this application domain. The

students may ask questions in natural language to clarify

their perceptions about the application domain. The lec-

turers of the course act as domain experts who will pro-

vide answers to questions in natural language that are

consistent with the target set Σt = {u(CT), u(LT), u(RT)},

SCHEDULEt
s = CT over the table schema SCHEDULE.

Suppose one group of students returns as an answer to the

question the set Σ = {u(CT), u(LRT), u(CLR)} and Ts =LRT.
One can then automatically compute =

1/2, = 2/5, and prox((Σ, Ts), (Σt, T
t
s))

= 1/3. Furthermore, one may also return an Armstrong

table for Σ and nfs(Ts), for example, the one in Table 6.

The students inspect the table and may make several

observations. For example, Fagin teaches 55505 and Got-

tlob teaches 77707 at the same time in the same room.

The students decide to ask the domain expert whether dif-

ferent courses can be taught in the same room at the same

time. The domain experts indicate that this is impossible,

and the students decide to replace the UC u(LRT) by the

UC u(RT) in response. In addition, the students notice

that Gottlob teaches in different rooms at the same time.

As this is impossible, they decide to specify the UC

u(LT). They now submit their revised constraint set Σ' =
{u(CT), u(RT), u(LT), u(CLR)} and Ts = LRT. Again, one

can then automatically compute (Σ',Ts) = 4/7,
(Σ',Ts) = 4/5, and prox((Σ',Ts), (Σt,T

t
s)) = 1/2.

Hence, inspecting the Armstrong table results in an

improvement of 1/14 in soundness, 2/5 in completeness,

and 1/6 in proximity.

VIII. CONCLUSION AND FUTURE WORK

We investigated the data- and schema-driven discovery

of SQL keys. We established insights into structural and

computational properties of Armstrong tables. These can

increase the discovery of semantically meaningful SQL

keys in practice, leading to better schema designs and

improved data processing. In addition, we also estab-

lished algorithms to automatically discover SQL keys in

given SQL tables. These have applications in require-

ment acquisition, schema design and query optimization.

We combined the data- and schema-driven approaches to

compute informative Armstrong tables, which are effec-

tive semantic samples of given data sets. Moreover, we

defined formal measures to assess the difference between

sets of SQL keys. These can be applied to validate the

usefulness of Armstrong tables and to database educa-

tion. Our findings also apply to Codd’s null marker inter-

pretation value exists but unknown, using Levene and

Loizou’s possible world semantics [38]. In the future we

plan to implement our results in a design aid, to test our

measures in applications, and to address the class of for-

eign keys.

ACKNOWLEDGMENTS

This research is supported by the Marsden Fund Coun-

cil from Government funding, administered by the Royal

Society of New Zealand.

REFERENCES

1. S. Hartmann, U. Leck, and S. Link, ‘On Codd families of

keys over incomplete relations,” The Computer Journal, vol.

54, no. 7, pp. 1166-1180, 2011.

2. B. Thalheim, “On semantic issues connected with keys in

relational databases permitting null values,” Journal of Infor-

mation Processing and Cybernetics, vol. 25, no. 1-2, pp. 11-

20, 1989.

3. B. Thalheim, “The number of keys in relational and nested

relational databases,” Discrete Applied Mathematics, vol. 40,

no. 2, pp. 265-282, 1992.

4. G. E. Weddell, “Reasoning about functional dependencies

generalized for semantic data models,” ACM Transactions

on Database Systems, vol. 17, no. 1, pp. 32-64, 1992.

5. V. L. Khizder and G. E. Weddell, “Reasoning about unique-

ness constraints in object relational databases,” IEEE Trans-

actions on Knowledge and Data Engineering, vol. 15, no. 5,

pp. 1295-1306, 2003.

6. D. Toman and G. E. Weddell, “On keys and functional

dependencies as first-class citizens in description logics,”

Journal of Automated Reasoning, vol. 40, no. 2-3, pp. 117-

complete
Σt,Ts

t Σ,Ts()
Σ*
 min Σt() Ts Ts

t
+

min Σt() Ts
t

+
--=

⊃ ⊃

0 0 complete
Σt,Ts

t Σ,Ts()

min Σ() Σt
() Σ

 min Σt()() Ts Ts
t

+

min Σ() min Σt() Ts Ts
t

+

⊃ ⊃ ⊃

⊃
⊃ ⊃

0 0

sound
Σt,Ts

t Σ,Ts()
complete

Σt,Ts
t Σ,Ts()

sound
Σt,Ts

t

complete
Σt,Ts

t

Schema- and Data-driven Discovery of SQL Keys

Van Bao Tran Le et al. 205 http://jcse.kiise.org

132, 2008.

7. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C. Tan,

“Keys for XML,” Computer Networks, vol. 39, no. 5, pp.

473-487, 2002.

8. S. Hartmann and S. Link, “Efficient reasoning about a robust

XML key fragment,” ACM Transactions on Database Sys-

tems, vol. 34, no. 2, article no. 10, 2009.

9. S. Hartmann and S. Link, “Numerical constraints on XML

data,” Information and Computation, vol. 208, no. 5, pp.

521-544, 2010.

10. G. Lausen, “Relational databases in RDF: keys and foreign

keys,” Semantic Web, Ontologies and Databases, Lecture

Notes in Computer Science vol. 5005, V. Christophides et al.

editors, Heidelberg: Springer, pp. 43-56, 2008.

11. B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-

Schneider, and U. Sattler, “OWL 2: the next step for OWL,”

Web Semantics, vol. 6, no. 4, pp. 309-322, 2008.

12. Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald, “GOR-

DIAN: efficient and scalable discovery of composite keys,”

Proceedings of the 32nd International Conference on Very

Large Data Bases, Seoul, Korea, 2006, pp. 691-702.

13. J. Demetrovics, “On the number of candidate keys,” Infor-

mation Processing Letters, vol. 7, no. 6, pp. 266-269, 1978.

14. CA Technologies, CA ERwin data modeler: methods guide

r7.3, https://support.ca.com/cadocs/0/e002961e.pdf.

15. S. Abiteboul, R. Hull, and V. Vianu, Foundation of Data-

base, Reading, MA: Addison-Wesley, 1995.

16. R. Fagin, “Armstrong databases,” IBM Research Labora-

tory, San Jose, CA, Research report RJ3440-40926, 1982.

17. B. Thalheim, Dependencies in Relational Databases, Stut-

tgart: B. G. Teubner, 1991.

18. W. D. Langeveldt and S. Link, “Empirical evidence for the

usefulness of Armstrong relations in the acquisition of mean-

ingful functional dependencies,” Information Systems, vol.

35, no. 3, pp. 352-374, 2010.

19. S. Link, “Armstrong databases: validation, communication

and consolidation of conceptual models with perfect test

data,” Proceedings of the 9th Asia-Pacific Conference on

Conceptual Modelling, Melbourne, Australia, 2012, pp. 3-19.

20. B. Alexe, B. T. Cate, P. G. Kolaitis, and W. C. Tan, “Charac-

terizing schema mappings via data examples,” ACM Trans-

actions on Database Systems, vol. 36, no. 4, article no. 23,

2011.

21. H. Mannila and K. J. Räihä, “Design by example: an appli-

cation of Armstrong relations,” Journal of Computer and

System Sciences, vol. 33, no. 2, pp. 126-141, 1986.

22. F. de Marchi and J. M. Petit, “Semantic sampling of exist-

ing databases through informative Armstrong databases,”

Information Systems, vol. 32, no. 3, pp. 446-457, 2007.

23. J. Demetrovics, “On the equivalence of candidate keys with

Sperner systems,” Acta Cybernetica, vol. 4, no. 3, pp. 247-

252, 1979.

24. C. Beeri, M. Dowd, R. Fagin, and R. Statman, “On the

structure of Armstrong relations for functional dependen-

cies,” Journal of the ACM, vol. 31, no. 1, pp. 30-46, 1984.

25. Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen,

“TANE: an efficient algorithm for discovering functional and

approximate dependencies,” The Computer Journal, vol. 42,

no. 2, pp. 100-111, 1999.

26. H. Mannila and K. J. Räihä, “Algorithms for inferring func-

tional dependencies from relations,” Data and Knowledge

Engineering, vol. 12, no. 1, pp. 83-99, 1994.

27. E. F. Codd, “A relational model of data for large shared data

banks,” Communications of the ACM, vol. 13, no. 6, pp.

377-387, 1970.

28. T. Imielinski and W. Lipski Jr, “Incomplete information in

relational databases,” Journal of the ACM, vol. 31, no. 4, pp.

761-791, 1984.

29. C. Zaniolo, “Database relations with null values,” Journal of

Computer and System Sciences, vol. 28, no. 1, pp. 142-166,

1984.

30. P. Atzeni and N. M. Morfuni, “Functional dependencies and

constraints on null values in database relations,” Information

and Control, vol. 70, no. 1, pp. 1-31, 1986.

31. S. Hartmann, M. Kirchberg, and S. Link, ‘Design by exam-

ple for SQL table definitions with functional dependencies,”

The VLDB Journal, vol. 21, no. 1, pp. 121-144, 2012.

32. V. B. T. Le, S. Link, and M. Memari, “Discovery of keys

from SQL tables,” Database Systems for Advanced Applica-

tions, Lecture Notes in Computer Science vol. 7238, S. Lee

et al. editors, Heidelberg: Springer Berlin, pp. 48-62, 2012.

33. C. J. Date, Database Design and Relational Theory: Nor-

mal Forms and All That Jazz, Sebastopol, CA: O’Reilly

Media, 2012.

34. T. Eiter and G. Gottlob, “Identifying the minimal transver-

sals of a hypergraph and related problems,” SIAM Journal

on Computing, vol. 24, no. 6, pp. 1278-1304, 1995.

35. J. Demetrovics and V. D. Thi, “Keys, antikeys and prime

attributes,” Annales Universitatis Scientiarum Budapestinen-

sis de Rolando Eotvos Nominatae Sectio Computatorica, vol.

8, pp. 35-52, 1987.

36. S. Hartmann and S. Link, “When data dependencies over

SQL tables meet the logics of paradox and S-3,” Proceed-

ings of the 29th ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems, Indianapolis, IN,

2010, pp. 317-326.

37. S. Hartmann and S. Link, “The implication problem of data

dependencies over SQL table definitions: axiomatic, algorith-

mic and logical characterizations,” ACM Transactions on

Database Systems, vol. 37, no. 2, article no. 13, 2012.

38. M. Levene and G. Loizou, “Axiomatisation of functional

dependencies in incomplete relations,” Theoretical Com-

puter Science, vol. 206, no. 1-2, pp. 283-300, 1998.

Journal of Computing Science and Engineering, Vol. 6, No. 3, September 2012, pp. 193-206

http://dx.doi.org/10.5626/JCSE.2012.6.3.193 206 Van Bao Tran Le et al.

Van Bao Tran Le

Van Le received a Master's degree in computer science from Ho Chi Minh City University of Technology,
Vietnam. Currently, she is a PhD student of Information Systems at the Victoria University of Wellington. Her
main area of research concerns the acquisition and visualization of semantics in data.

Sebastian Link

Sebastian Link received a PhD in Information Systems from Massey University in 2005. Currently, he is
Associate Professor of Computer Science at the University of Auckland. His research interests include
conceptual modeling, semantics in databases, foundations of markup languages, and the application of
discrete mathematics to computer science. Sebastian has published more than 75 research papers, and
served as a reviewer for numerous conferences and journals. He is a member of the editorial board of the
journal Information Systems.

Mozhgan Memari

Mozhgan Memari received a Master's degree in information technology management from Alzahra
University in Tehran, Iran. Currently, she is a PhD student of Computer Science at the University of Auckland.
Her main area of research pertains to semantics in incomplete databases.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

