DOI QR코드

DOI QR Code

The Leaching of Gold-silver from Refractory Gold Concentrate by Chlorine-hypochlorite Solution

염소-차아염소산 용액에 의한 저항성 금 정광으로부터 Gold-silver 용출

  • Cho, Kang-Hee (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Kim, Bong-Ju (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Oh, Su-Ji (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Choi, Seoung-Hwan (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Engineering Research Institute, Chonnam National University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 조강희 (조선대학교 에너지자원공학과) ;
  • 김봉주 (조선대학교 에너지자원공학과) ;
  • 오스지 (조선대학교 에너지자원공학과) ;
  • 최승환 (조선대학교 에너지자원공학과) ;
  • 최낙철 (전남대학교 공업기술연구소) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • Received : 2012.08.13
  • Accepted : 2012.09.25
  • Published : 2012.09.28

Abstract

Leaching experiments of gold and silver from roasted concentrate were carried out using a chlorine-hypochlorite solution. The leaching rate of gold was 75% at 1.5:1 ratio of chlorine and hypochlorite and increased to 81% with adding 1 M NaCl. However, at 1% pulp density and at $65^{\circ}C$, the leaching rates of Au were close to 100%. XRD analysis identified quartz in the solid residues after digestion of roasted concentrate with aqua regia or chlorine-hypochloride leaching solution. This suggests that the gold may not be leached out of the quartz in aqua regia or chlorine-hypochlorite solution. In order to leach the gold from the quartz, the concentrate will have to be pre-treated through ultra-fine grinding or treated with stronger oxidative agents.

염소-차아염소산 용액을 소성정광에 적용하여 gold와 silver를 효과적으로 용출시키고자 하였다. 염소 : 차아염소산 혼합비율 1.5 : 1, 그리고 NaCl 농도를 1 M으로 적용하였을 때 Au 용출율은 겨우 75%와 81%이였다. 그러나 광액농도를 1%로, 그리고 용출온도를 $65^{\circ}C$로 적용하자 Au 용출율이 100%에 도달되었다. 왕수분해 및 염소-차아염소산 용출 고체 잔유물을 XRD분석을 실시한 결과 석영이 관찰되었다. 따라서 석영 속에 함유된 gold는 염소-차아염소산으로 용출시키지 못할 것으로 사료된다. 따라서 석영 속의 gold를 용출시키기 위해서는 더 작은 미립자로 전처리하거나 더 강력한 산화제를 적용해야 할 것이다.

Keywords

References

  1. Almeida, M.F. and Amarante, M.A. (1995) Leaching of a silver bearing sulphide by-product with cyanide, thiourea and chloride solutions. Miner. Eng., 8, 257-271. https://doi.org/10.1016/0892-6875(94)00124-U
  2. Aylmore, M.G. (2001) Treatment of a refractory gold-copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Miner. Eng., 14, 615-637. https://doi.org/10.1016/S0892-6875(01)00057-7
  3. Baghalha, M. (2007) Leaching of an oxide gold ore with chloride/hypochlorite solutions. Int. J. Miner. Process, 82, 178-186. https://doi.org/10.1016/j.minpro.2006.09.001
  4. Curreli, L., Ghiani, M., Surracco, M., and Orru, G. (2005) Benefication of a gold bearing energite ore by flotation and As leaching with Na-hypochlorite. Miner. Eng., 18, 849-854. https://doi.org/10.1016/j.mineng.2005.01.023
  5. Filmer, A.O. (1982) The dissolution of gold from roasted pyrite concentrate. J. S. Afr. I. Min. Metall., March, 90-94.
  6. Harris, D.C. (1990) The mineralogy of gold and its relevance to gold recoveries, Miner. Deposita, 25, S3-S7. https://doi.org/10.1007/BF00205243
  7. Herreros, O., Quiroz, R., Manzano, E., Bou, C., and Vinals, J. (1998) Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy, 49, 87-101. https://doi.org/10.1016/S0304-386X(98)00010-3
  8. Hilson, G. and Monhemius, A.J. (2006) Alternative to cyanide in the gold mining industry: what prospects for the future?. J. Clean. Prod., 14, 1158-1167. https://doi.org/10.1016/j.jclepro.2004.09.005
  9. Ikiz, D., Gulfen, M., and Aydin, A.O. (2006) Dissolution kinetics of primary chalcopyrite ore in hypochlorite solution. Miner. Eng., 19, 972-974. https://doi.org/10.1016/j.mineng.2005.09.047
  10. Jeffrey, M.I., Breuer P.L., and Choo, W.L. (2001) A kinetic study that compares the leaching of gold in the cyanide, thiosulfate, and chloride systems. Metall. Mater. Trans. B., 32B, December, 979-986.
  11. Kozin, L.F, and Melekhin, V.T. (2004) Extraction of gold from ores and concentrates by leaching with the use of cyanides and alternative reagents. Russ. J. Appl. Chem., 77, 1573-1592. https://doi.org/10.1007/s11167-005-0077-6
  12. Lehmann, M.N., O'leary, S., and Dunn, J.G. (2000) An evaluation of pretreatment to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite, Miner. Eng., 13, 1-18. https://doi.org/10.1016/S0892-6875(99)00145-4
  13. Maddox, L.M., Bancroft, G.M., Scaini, M.J., and Lorimer, J.W. (1998) Invisible gold: comparison of Au deposition on pyrite and arsenopyrite. Am. Miner., 83, 1240-1245.
  14. Nam, K.S., Jung, B.H., An, J.W., Ha, T.J., Taan, T., and Kim, M.J. (2008) Use of chloride-hypochlorite leachants to recover gold from tailing. Int. J. Miner. Process, 86, 131-140. https://doi.org/10.1016/j.minpro.2007.12.003
  15. Padilla, R., Giron, D. and Ruiz, M.C. (2005) Leaching of enargite in $H_2SO_4-NaCl-O_2$ media. Hydrometallurgy., 80, 272-279. https://doi.org/10.1016/j.hydromet.2005.08.006
  16. Pangum, L.S. and Browner, R.E. (1996) Pressure chloride leaching of a refractory gold ore. Miner. Eng., 9, 457-556.
  17. Potts, P.J. (1987) A handbook of silicate rock analysis. Blackie., 622p.
  18. Prasad, M.S., Mensah-Biney, R., and Pizarro, R.S. (1991) Modern trends in gold processing-overview. Miner. Eng., 4, 1257-1277. https://doi.org/10.1016/0892-6875(91)90171-Q
  19. Puvvada, G.V.K. and Murthy, D.S.R. (2000) Selective precious metals leaching from a chalcopyrite concentrate using chloride/hypochlorite media. Hydrometallurgy., 58, 185-191. https://doi.org/10.1016/S0304-386X(00)00083-9
  20. Robinson, J.J. (1988) The extraction of gold from sulhidic concentrates by roasting and cyanidation. J. S. Afr. I. Metall., 88, 117-130.
  21. Saleh, S.M., Said, S.A., and El-Shahawi, M.S. (2001) Extraction and recovery of Au, Sb and Sn from electrorefined solid waste. Anal. Chim. Acta, 436, 69-77. https://doi.org/10.1016/S0003-2670(01)00866-2
  22. Vaughan, J.P. (2004) The process mineralogy of gold: the classification of ore types. JOM., July, 46-48.
  23. Yang, S., Blum, N., Rahders, E., and Zhang, Z. (1998) The nature of invisible gold in sulfide from the Xiangxi Au-Sb-W ore deposit in Northwestern Hunan, People's Republic of China. Can. Mineral, 36, 1361-1372.

Cited by

  1. Mineralogical Phase Transform of Salt-roasted Concentrate and Enhancement of Gold Leaching by Chlorine-hypochlorite Solution vol.26, pp.1, 2013, https://doi.org/10.9727/jmsk.2013.26.1.9
  2. Application of Biological Oxidation for the Grade Improvement of Au and Ag in An Invisible Gold Concentrate vol.57, pp.2, 2012, https://doi.org/10.32390/ksmer.2020.57.2.149
  3. 저품위 광석 또는 광미내 금 침출기술 현황 vol.29, pp.2, 2012, https://doi.org/10.7844/kirr.2020.29.2.3
  4. 열수광물내 Au의 선상회수를 위한 마이크로웨이브-차아염소산 용출 적용성 vol.33, pp.3, 2012, https://doi.org/10.22807/kjmp.2020.33.3.243