DOI QR코드

DOI QR Code

Direct Determination of Cationic Disordering in Sodium Bismuth Titanate

  • 투고 : 2012.08.11
  • 심사 : 2012.09.10
  • 발행 : 2012.09.30

초록

The relaxor ferroelectric feature in lead-free perovskite oxides, where the dipoles are randomly oriented and they can be feasibly aligned parallel to the external bias, is attracting lots of attention in the field of piezoelectric materials science, since it is one of candidates to replace the toxic lead-based materials that are still being commercially used. However, the origin of relaxor characteristic and its related atomic structure are still ambiguous. In this study, $Na_{1/2}Bi_{1/2}TiO_3$, chosen as a model relaxor system, was found to exhibit a cationic-disordered atomic structure; and furthermore the nonpolar atomic structure and its related oxygen tilting were ascertained via annular bright field imaging skill. We also found that this cationic disordering gives rise to the local formation of atomic vacancies.

키워드

참고문헌

  1. Bao P, Yan F, Li W, Dai Y R, Shen H M, Zhu J S, Wang Y N, Chan H L W, and Choy C-L (2002) Mechanical properties related to the relaxorferroelectric phase transition of titanium-doped lead magnesium niobate. Appl. Phys. Lett. 81, 2059-2061. https://doi.org/10.1063/1.1498498
  2. Batson P E, Dellby N and Krivanek O L (2002) Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617-620. https://doi.org/10.1038/nature00972
  3. Bokov A A, Leshchenko M A, Malitskaya M A and Raevski I P (1999) Dielectric spectra and Vogel-Fulcher scaling in Pb(In0.5Nb0.5)O3 relaxor ferroelectric. J. Phys.: Condensed Matter 11, 4899-4911. https://doi.org/10.1088/0953-8984/11/25/309
  4. Burton B P and Cockayne E (2001) Prediction of the Na1/2Bi1/2TiO3 ground state. AIP Conference Proceedings in Fundamental Physics of Ferroelectrics 582, 82-90.
  5. Chiang Y-M, Farrey G W and Soukhojak A N (1998) Lead-free highstrain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family. Appl. Phys. Lett. 73, 3683-3685. https://doi.org/10.1063/1.122862
  6. Choi S-Y, Chung S-Y, Yamamoto T, and Ikuhara Y (2009) Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM. Adv. Mater. 21, 885-889. https://doi.org/10.1002/adma.200802728
  7. Choi S-Y, Jeong S-J, Lee D-S, Kim M-S, Lee J-S, Cho J H, Kim B I, and Ikuhara Y (2012) Gigantic electrostrain in duplex structured alkaline niobates. Chem. Mater. 24, 3363-3369. https://doi.org/10.1021/cm301324h
  8. Chu F, Setter N and Tagantsev A K (1993) The spontaneous relaxorferroelectric transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 74, 5219- 5134.
  9. Chung S-Y, Choi S-Y, Yamamoto T and Ikuhara Y (2008) Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502-1-125502-4. https://doi.org/10.1103/PhysRevLett.100.125502
  10. Chung S-Y, Choi S-Y, Yamamoto T and Ikuhara Y (2009) Orientation- Dependent Arrangement of Antisite Defects in Lithium Iron(II) Phosphate Crystals. Angew. Chem. Int. Ed. 48, 543-546. https://doi.org/10.1002/anie.200803520
  11. Dai X, Xu Z and Viehland D (1994) The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate. Phil. Mag. B 71, 33-38.
  12. Dorcet V, Trolliard G and Boullay P (2008a) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhomboheral to orthorhombic phase transition. Chem. Mater. 20, 5061-5073. https://doi.org/10.1021/cm8004634
  13. Dorcet V, Trolliard G and Boullay P (2008b) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orhorhombic to tetragonal phase transition. Chem. Mater. 20, 5074- 5082. https://doi.org/10.1021/cm800464d
  14. Dorcet V and Troillard G (2008) A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta. Mater. 56, 1753-1761. https://doi.org/10.1016/j.actamat.2007.12.027
  15. Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, and Ikuhara Y (2010) Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903-923. https://doi.org/10.1016/j.ultramic.2010.04.004
  16. Haider M, Uhlemann S, Schwan E, Kabius B, Rose H, and Urban K (1998) Electron microscopy image enhanced. Nature 392, 768-769. https://doi.org/10.1038/33823
  17. Hovden R, Xin H L, and Muller D A (2010) Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc. Microanal. 17, 75-80.
  18. Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, and Abe E (2010) Direct imaging of hydrogen-atom columns in a crystal by annular bright-fi eld electron microscopy. Nature Mater. 10, 278-281.
  19. Jia C L, Mi S-B, Urban K, Vrejoiu I, Alexe M, and Hesse D (2008) Atomicscale study of electric dipoles near charged an uncharged domain walls in ferroelectric films. Nature Mater. 7, 57-61. https://doi.org/10.1038/nmat2080
  20. Jones G O and Thomas P A (2000) The tetragonal phase of Na0.5Bi0.5TiO3 - a new variant of the perovskite structure. Acta. Cryst. B 56, 426- 430. https://doi.org/10.1107/S0108768100001166
  21. Jones G O and Thomas P A (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta. Cryst. B 58, 168-178. https://doi.org/10.1107/S0108768101020845
  22. Klie R F and Browning N D (2000) Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl. Phys. Lett. 87, 3737-3739.
  23. Kreisel J, Glazer A M, Bouvier P, and Lucazeau G (2001) High-pressure Raman study of a relaxor ferroelectric: the Na1/2Bi1/2TiO3 perovskite. Phys. Rev. B 63, 174106-1-174106-10. https://doi.org/10.1103/PhysRevB.63.174106
  24. Kreisel J, Glazer A M, Jones G, Thomas P A, Abello L, and Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 < x < 1) solid solution. J. Phys.: Condensed Matter 12, 3627- 3280.
  25. Krunmins A, Shiosaki T, and Koizumi S (1994) Spontaneous trasition between relaxor and ferroelectric states in lanthanum-modifi ed lead zirconate titanate (6-7)/65/35. Jpn. J. Appl. Phys. 33, 4940-4945. https://doi.org/10.1143/JJAP.33.4940
  26. Levin I and Reaney I M (2012) Nano-and mesoscale structure of Na1/2Bi1/2TiO3: a TEM perspective. Adv. Func. Mater. 22, 3445- 3452. https://doi.org/10.1002/adfm.201200282
  27. Lupini A R and Pennycook S J (2007) Aberration corrected imaging in the STEM. Microsc. Microanal. 13, 1146-1147.
  28. Mizoguchi T, Olovsson W, Ikeno H and Tanaka I (2010) Theoretical ELNES using one-particle and multi-particle calculations. Micron 41, 695- 709. https://doi.org/10.1016/j.micron.2010.05.011
  29. Muller D A, Nakagawa N, Ohtomo A, Grazul J L, and Hwang H Y (2004) Atomic-scale imaging of nanoengineered oxygen vacancy profi les in SrTiO3. Nature 430, 657-661. https://doi.org/10.1038/nature02756
  30. Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfi tt M F, Szilagy Z S, Lupini A R, Borisevich A, Sides Jr. W H, and Pennycook S J (2004) Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741. https://doi.org/10.1126/science.1100965
  31. Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M, and Kondo Y (2009) Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164-165. https://doi.org/10.1017/S1431927609093891
  32. Park S-E, Chung S-J, Kim I-T, and Hong K S (1994) Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2) TiO3. J. Am. Ceram. Soc. 77, 2641-2647. https://doi.org/10.1111/j.1151-2916.1994.tb04655.x
  33. Petzelt J, Kamba S, Fabry J, Noujni D, Porokhonskyy V, Pashkin A, Franke I, Roleder K, Suchanicz J, Klein R, and Kugel G E (2004) Infrared, Raman and high-frequency dielectric sspectroscopy and the phase transition in Na1/2Bi1/2TiO3. J. Phys.: Condensed Matter 16, 2719- 2731. https://doi.org/10.1088/0953-8984/16/15/022
  34. Sciau P, Calvarin G, and Ravez J (2000) X-ray diffraction study of BaTi0.65Zr0.35O3 and Ba0.92Ca0.08Ti0.75Zr0.25O3 compositions: influence of electric field. Sol. Stat. Commun. 113, 77- 82.
  35. Simon A, Ravez J J, and Maglione M (2004) The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. J. Phys.: Condensed Matter 16, 963. https://doi.org/10.1088/0953-8984/16/6/023
  36. Siny G, Smirnova T A, and Krunzina T V (1991) The phase transition dynamics in Na1/2Bi1/2TiO3. Ferroelectrics 124, 207-212. https://doi.org/10.1080/00150199108209439
  37. Smolenskii G A, Isupov V A, Agranovskaya A I, and Krainik N N (1961a) New ferroelectrics of complex composition. Sov. Phys. Solid State 2, 2651-2654.
  38. Smolenskii G A, Isupov V A, Agranovskaya A I, and Popov S N (1961b) Ferroelectrics with diffuse phase transitions. Sov. Phys. Solid State 2, 2584-2594.
  39. Tagantsev A K and Galzounov A E (1998) Mechanism of polarization response in the ergodic phase of a relaxor ferroelectric. Phys. Rev. B 57, 18-21. https://doi.org/10.1103/PhysRevB.57.18
  40. Tai C W and Lereah Y (2009) Nanoscale oxygen octahedral tilting in 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 leadfree perovskite piezoelectric ceramics. Appl. Phys. Lett. 95, 062901-1-062901-3. https://doi.org/10.1063/1.3193544
  41. Tu C S, Siny I G, and Schmidt V H (1994) Brillouin scattering in Na1/2Bi1/2TiO3. Ferroelectrics 152, 403-408. https://doi.org/10.1080/00150199408017654
  42. Vakhrushev S B, Isupov V A, Kvyatkovsky B E, Okuneva N M, Pronin I P, Smolensky G A, and Syrnikov P P. Phase transition and soft modes in sodium bismuth titanate. Ferroelectrics 63, 153-160.
  43. Xu Y-N and Ching W Y (2000) Electronic structure of Na1/2Bi1/2TiO3 and its solid solution with BaTiO3. Phy. Mag. B 80, 1141-1151. https://doi.org/10.1080/13642810008208587
  44. Yao J, Ge W, Yan Li, Reynolds W T, Li J, Viehland D, Keselev D A, Kholkin A L, Zhang Q, and Luo H (2012) The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: increased ferroelectric ordering and coexisting octahedral tilts. J. Appl. Phys. 111, 064109-1-064109-6. https://doi.org/10.1063/1.3699010
  45. Yasuda N, Ohwa H, and Asano S (1996) Dielectric properties and phase transitions of Ba(Ti1-xSnx)O3 solid solution. Jpn. J. Appl. Phys. 35, 5099. https://doi.org/10.1143/JJAP.35.5099