DOI QR코드

DOI QR Code

UVB-Shielding Effects of para-Coumaric Acid

파라-쿠마린산의 자외선B 차단 효과

  • Song, Kyo-Sun (Department of Molecular Medicine and Cell and Matrix Research Institute, Kyungpook National University School of Medicine) ;
  • Boo, Yong-Chool (Department of Molecular Medicine and Cell and Matrix Research Institute, Kyungpook National University School of Medicine)
  • 송교선 (경북대학교 의학전문대학원 분자의학교실 세포기질연구소) ;
  • 부용출 (경북대학교 의학전문대학원 분자의학교실 세포기질연구소)
  • Received : 2012.05.23
  • Accepted : 2012.08.22
  • Published : 2012.09.30

Abstract

Recent studies have uncovered attractive properties of para-coumaric acid (PCA) as a potential skin hywhitening agent. The purpose of the current study was to examine its UVB-shielding effects. Effects of PCA on the viability of HaCaT cells exposed to UVB were assessed in vitro in comparison with other aromatic amino acid metabolites that have similar UV absorption spectra. For in vivo test, PCA cream (1.5 %) and cream base were topically applied to the dorsal skin of SKH-1 hairless mice and the inflammatory responses due to UVB exposure were monitored by changes in skin color (erythema) and thickness (edema). The cream application-UVB exposure regimen was repeated every other day for a total of 12 sessions. When HaCaT cells were irradiated with UVB, there was a dose-dependent decline in cell viability. The cell viability decline due to UVB exposure (10 mJ $cm^{-2}$) was significantly prevented by 100 ${\mu}M$ PCA, cinnamic acid, urocanic acid, or indole acrylic acid by 39, 27, 39, or 31 %, respectively. Topical application of PCA cream onto the dorsal skin of hairless mice (10 ${\mu}g\;cm^{-2}$) attenuated the changes of color parameters, $L^*$, $a^*$, $b^*$ values, and thickness of the UVB (150 mJ $cm^{-2}$)-exposed skin by 59, 50, 58, and 53 %, respectively. The current study, together with the previous studies that demonstrated the antimelanogenic effects of PCA, suggested that PCA may prevent not only dyspigmentation but also inflammatory reactions in the UVB-exposed skin.

최근 연구에서 잠재적 피부 색소침착 경감제로서 파라-쿠마린산(PCA)의 주목되는 특성이 발견되었다. 본 연구의 목적은 이 물질의 자외선 차단 효과를 탐구하는 것이다. 자외선에 노출된 HaCaT 세포의 생존율에 대한 PCA의 영향을 in vitro에서 조사하고, 자외선 흡수 스펙트럼이 유사한 방향성 아미노산 대사물들의 작용과 비교하였다. In vivo시험으로는 PCA 크림(1.5 %)과 크림 베이스를 SKH-1 무모 쥐의 등 피부에 도포하고 UVB에 의한 염증 반응으로 나타나는 피부색(홍반) 및 두께 변화(부종)를 측정하였다. 크림 도포-자외선 조사는 2일 간격으로 총 12회 반복하였다. HaCaT 세포를 UVB에 노출시켰을 때 광량 의존적으로 세포 생존율이 감소하였다. 자외선 노출(10 mJ $cm^{-2}$)에 의한 세포 생존율감소는 100 ${\mu}M$의 PCA, cinnamic acid, urocanic acid, 그리고 indole acrylic acid에 의해 각각 39, 27, 39, 31 %가 억제되었다. 무모 쥐의 등 부위에 도포된 PCA크림(10 ${\mu}g\;cm^{-2}$)은 자외선(150 mJ $cm^{-2}$)-노출 피부의 색 지수, 즉 $L^*$, $a^*$$b^*$ 값, 그리고 두께의 변화를 각각 59, 50, 58, 53 %씩 억제하였다. 본 연구의 결과는 PCA의 멜라닌 생성 억제 작용을 밝힌 선행 연구와 함께 PCA가 자외선에 노출된 피부의 색소 이상 침착과 염증 반응을 막아줄 수 있음을 시사하였다.

Keywords

References

  1. A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84(4), 1155 (2004). https://doi.org/10.1152/physrev.00044.2003
  2. C. R. Goding, Melanocytes : the new Black, Int. J. Biochem. Cell Biol., 39(2), 275 (2007). https://doi.org/10.1016/j.biocel.2006.10.003
  3. S. Parvez, M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae, Survey and mechanism of skin depigmenting and lightening agents, Phytother. Res., 20(11), 921 (2006). https://doi.org/10.1002/ptr.1954
  4. S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment Cell Res., 16(2), 101 (2003). https://doi.org/10.1034/j.1600-0749.2003.00029.x
  5. N. Nakai, T. Kishida, M. Shin-Ya, J. Imanishi, Y. Ueda, S. Kishimoto, and O. Mazda, Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf, Gene Ther., 14(4), 357 (2007). https://doi.org/10.1038/sj.gt.3302868
  6. F. Solano, S. Briganti, M. Picardo, and G. Ghanem, Hypopigmenting agents : an updated review on biological, chemical and clinical aspects, Pigment Cell Res., 19(6), 550 (2006). https://doi.org/10.1111/j.1600-0749.2006.00334.x
  7. S. J. Lee, G. I. Mun, S. M. An, and Y. C. Boo, Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid, BMB Rep., 42(9), 561 (2009). https://doi.org/10.5483/BMBRep.2009.42.9.561
  8. L. Y. Zang, G. Cosma, H. Gardner, X. Shi, V. Castranova, and V. Vallyathan, Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation, Am. J. Physiol. Cell Physiol., 279(4), C954 (2000).
  9. S. I. Lee, S. M. An, G. I. Mun, S. J. Lee, K. M. Park, S. H. Park, and Y. C. Boo, Protective effect of Sasa quelpaertensis and p-coumaric acid on ethanol-induced hepatotoxicity in mice, J. Appl. Biol. Chem., 51(4), 148 (2008). https://doi.org/10.3839/jabc.2008.026
  10. S. M. An, S. I. Lee, S. W. Choi, S. W. Moon, and Y. C. Boo, p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by alpha-melanocyte stimulating hormone, Br. J. Dermatol., 159(2), 292 (2008). https://doi.org/10.1111/j.1365-2133.2008.08653.x
  11. M. Kim, S. M. An, J. S. Koh, D. I. Jang, and Y. C. Boo, Use of non-melanocytic HEK293 cells stably expressing human tyrosinase for the screening of anti-melanogenic agents, J. Cosmet. Sci., In Press (2011).
  12. S. H. Park, D. S. Kim, S. H. Park, J. W. Shin, S. W. Youn, and K. C. Park, Inhibitory effect of p-coumaric acid by Rhodiola sachalinensis on melanin synthesis in B16F10 cells, Pharmazie, 63(4), 290 (2008).
  13. S. M. An, J. S. Koh, and Y. C. Boo, p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB, Phytother. Res., 24(8), 1175 (2010).
  14. M. Kim, J. Park, K. Song, H. G. Kim, J. S. Koh, and Y. C. Boo, Screening of plant extracts for human tyrosinase inhibiting effects, Int. J. Cosmet. Sci., (2012).
  15. K. Song, S. M. An, M. Kim, J. S. Koh, and Y. C. Boo, Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities, J. Dermatol. Sci., 63(1), 17 (2011). https://doi.org/10.1016/j.jdermsci.2011.03.012
  16. Y. K. Seo, S. J. Kim, Y. C. Boo, J. H. Baek, S. H. Lee, and J. S. Koh, Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation, Clin. Exp. Dermatol., 36(3), 260 (2011). https://doi.org/10.1111/j.1365-2230.2010.03983.x
  17. R. R. Fritz, D. S. Hodgins, and C. W. Abell, Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals, J. Biol. Chem., 251(15), 4646 (1976).
  18. N. J. Turner, Ammonia lyases and aminomutases as biocatalysts for the synthesis of alpha-amino and beta-amino acids, Curr. Opin. Chem. Biol., 15(2), 234 (2011). https://doi.org/10.1016/j.cbpa.2010.11.009
  19. J. Tabachnick, Urocanic acid, the major acid-soluble, ultraviolet-absorbing compound in guinea pig epidermis, Arch. Biochem. Biophys., 70(1), 295 (1957). https://doi.org/10.1016/0003-9861(57)90107-8
  20. J. Tabachnick, Studies on the biochemistry of epidermis. I. The free amino acids, ammonia, urocanic acid and nucleic acid content of normal albino guinea pig epidermis, J. Invest Dermatol., 32(5), 563 (1959). https://doi.org/10.1038/jid.1959.94
  21. N. K. Gibbs, M. Norval, N. J. Traynor, M. Wolf, B. E. Johnson, and J. Crosby, Action spectra for the trans to cis photoisomerisation of urocanic acid in vitro and in mouse skin, Photochem. Photobiol., 57(3), 584 (1993). https://doi.org/10.1111/j.1751-1097.1993.tb02338.x
  22. J. Brookman, J. N. Chacon, and R. S. Sinclair, Some photophysical studies of cis- and trans-urocanic acid, Photochem. Photobiol. Sci., 1(5), 327 (2002). https://doi.org/10.1039/b201621d
  23. E. C. De Fabo and F. P. Noonan, Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology, J. Exp. Med., 158(1), 84 (1983). https://doi.org/10.1084/jem.158.1.84
  24. V. E. Reeve, G. E. Greenoak, P. J. Canfield, C. Boehm-Wilcox, and C. H. Gallagher, Topical urocanic acid enhances UV-induced tumour yield and malignancy in the hairless mouse, Photochem. Photobiol., 49(4), 459 (1989). https://doi.org/10.1111/j.1751-1097.1989.tb09195.x
  25. C. Barresi, C. Stremnitzer, V. Mlitz, S. Kezic, A. Kammeyer, M. Ghannadan, K. Posa-Markaryan, C. Selden, E. Tschachler, and L. Eckhart, Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection, J. Invest. Dermatol., 131(1), 188 (2011). https://doi.org/10.1038/jid.2010.231
  26. N. K. Gibbs and M. Norval, Urocanic acid in the skin: A mixed blessing?, J. Invest Dermatol., 131(1), 14 (2011). https://doi.org/10.1038/jid.2010.276
  27. F. Denizot and R. Lang, Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. Immunol. Methods, 89(2), 271 (1986). https://doi.org/10.1016/0022-1759(86)90368-6
  28. F. Afaq and H. Mukhtar, Botanical antioxidants in the prevention of photocarcinogenesis and photoaging, Exp. Dermatol., 15(9), 678 (2006). https://doi.org/10.1111/j.1600-0625.2006.00466.x
  29. S. A. Miller, S. G. Coelho, B. Z. Zmudzka, H. F. Bushar, Y. Yamaguchi, V. J. Hearing, and J. Z. Beer, Dynamics of pigmentation induction by repeated ultraviolet exposures: dose, dose interval and ultraviolet spectrum dependence, Br. J. Dermatol., 159(4), 921 (2008). https://doi.org/10.1111/j.1365-2133.2008.08708.x
  30. C. A. Elmets, D. Singh, K. Tubesing, M. Matsui, S. Katiyar, and H. Mukhtar, Cutaneous photoprotection from ultraviolet injury by green tea polyphenols, J. Am. Acad. Dermatol., 44(3), 425 (2001). https://doi.org/10.1067/mjd.2001.112919
  31. R. L. Sams, 2nd, L. H. Couch, B. J. Miller, C. V. Okerberg, A. R. Warbritton, W. G. Wamer, J. Z. Beer and P. C. Howard, Effects of alpha- and beta-hydroxy acids on the edemal response induced in female SKH-1 mice by simulated solar light, Toxicol. Appl. Pharmacol, 184(3), 136 (2002). https://doi.org/10.1006/taap.2002.9498
  32. Y. Kimura and M. Sumiyoshi, French maritime pine bark (Pinus maritima Lam.) extract (Flavangenol) prevents chronic UVB radiation-induced skin damage and carcinogenesis in melanin-possessing hairless mice, Photochem. Photobiol., 86(4), 955 (2010). https://doi.org/10.1111/j.1751-1097.2010.00751.x
  33. K. A. Williams, K. Kolappaswamy, L. J. Detolla, and I. Vucenik, Protective effect of inositol hexaphosphate against UVB damage in HaCaT cells and skin carcinogenesis in SKH1 hairless mice, Comp. Med., 61(1), 39 (2011).

Cited by

  1. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts vol.19, pp.3, 2015, https://doi.org/10.4196/kjpp.2015.19.3.241