DOI QR코드

DOI QR Code

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University) ;
  • Lim, Jong-Seok (Department of Biological Science and the Research Center for Women's Disease, Sookmyung Women's University)
  • Received : 2012.05.18
  • Accepted : 2012.06.07
  • Published : 2012.06.30

Abstract

Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.

Keywords

References

  1. Chen, M., and A. von Mikecz. 2005. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to $SiO_{2}$ nanoparticles. Exp. Cell Res. 305: 51-62. https://doi.org/10.1016/j.yexcr.2004.12.021
  2. Pan, Z., W. Lee, L. Slutsky, R. A. Clark, N. Pernodet, and M. H. Rafailovich. 2009. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5: 511-520. https://doi.org/10.1002/smll.200800798
  3. Foley, S., C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta, and C. Larroque. 2002. Biochem. Biophys. Res. Commun. 294: 116-119. https://doi.org/10.1016/S0006-291X(02)00445-X
  4. Oberdorster, E. 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112: 1058-1062. https://doi.org/10.1289/ehp.7021
  5. Vallhov, H., S. Gabrielsson, M. Stromme, A. Scheynius, and A. E. Garcia-Bennett. 2007. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 7: 3576-3582. https://doi.org/10.1021/nl0714785
  6. Cho, W. S., M. Choi, B. S. Han, M. Cho, J. Oh, K. Park, S. J. Kim, S. H. Kim, and J. Jeong. 2007. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol. Lett. 175: 24-33. https://doi.org/10.1016/j.toxlet.2007.09.008
  7. Huang, D. M., T. H. Chung, Y. Hung, F. Lu, S. H. Wu, C. Y. Mou, M. Yao, and Y. C. Chen. 2008. Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol. Appl. Pharmacol. 231: 208-215. https://doi.org/10.1016/j.taap.2008.04.009
  8. Wang, J. J., B. J. Sanderson, and H. Wang. 2007. Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ. Mol. Mutagen. 48: 151-157. https://doi.org/10.1002/em.20287
  9. Park, E. J., and K. Park. 2009. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett. 184: 18-25. https://doi.org/10.1016/j.toxlet.2008.10.012
  10. Fubini, B., and A. Hubbard. 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34: 1507-1516. https://doi.org/10.1016/S0891-5849(03)00149-7
  11. Warheit, D. B., T. A. McHugh, and M. A. Hartsky. 1995. Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand. J. Work Environ. Health 21(Suppl 2): 19-21.
  12. Leigh, J., H. Wang, A. Bonin, M. Peters, and X. Ruan. 1997. Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ. Health. Perspect. 105(Suppl 5): 1241-1245. https://doi.org/10.1289/ehp.97105s51241
  13. Banchereau, J., and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252. https://doi.org/10.1038/32588
  14. Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  15. Blanco, P., A. K. Palucka, V. Pascual, and J. Banchereau. 2008. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 19: 41-52. https://doi.org/10.1016/j.cytogfr.2007.10.004
  16. Kang, K., H. Kim, K. I. Kim, Y. Yang, D. Y. Yoon, J. H. Kim, J. H. Ryu, E. J. Noh, S. D. Jeon, and J. S. Lim. 2008. SK-126, a synthetic compound, regulates the production of inflammatory cytokines induced by LPS in antigen-presenting cells. Biochem. Pharmacol. 75: 1054-1064. https://doi.org/10.1016/j.bcp.2007.10.028
  17. Heath, W. R., G. T. Belz, G. M. Behrens, C. M. Smith, S. P. Forehan, I. A. Parish, G. M. Davey, N. S. Wilson, F. R. Carbone, and J. A. Villadangos. 2004. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199: 9-26. https://doi.org/10.1111/j.0105-2896.2004.00142.x
  18. Reis e Sousa, C. 2006. Dendritic cells in a mature age. Nat. Rev. Immunol. 6: 476-483. https://doi.org/10.1038/nri1845
  19. Shen, Z., G. Reznikoff, G. Dranoff, and K. L. Rock. 1997. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158: 2723-2730.
  20. Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176: 1693-1702. https://doi.org/10.1084/jem.176.6.1693
  21. Worle-Knirsch, J. M., K. Pulskamp, and H. F. Krug. 2006. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6: 1261-1268. https://doi.org/10.1021/nl060177c
  22. Laaksonen, T., H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkila, L. Peltonen, N. Kumar, D. Y. Murzin, V. P. Lehto, and J. Hirvonen. 2007. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20: 1913-1918. https://doi.org/10.1021/tx700326b
  23. Kowalczyk, D. W., A. P. Wlazlo, M. Blaszczyk-Thurin, Z. Q. Xiang, W. Giles-Davis, and H. C. Ertl. 2001. A method that allows easy characterization of tumor-infiltrating lymphocytes. J. Immunol. Methods 253: 163-175. https://doi.org/10.1016/S0022-1759(01)00356-8
  24. Curiel, T. J., P. Cheng, P. Mottram, X. Alvarez, L. Moons, M. Evdemon-Hogan, S. Wei, L. Zou, I. Kryczek, G. Hoyle, A. Lackner, P. Carmeliet, and W. Zou. 2004. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 64: 5535-5538. https://doi.org/10.1158/0008-5472.CAN-04-1272
  25. Saudemont, A., N. Jouy, D. Hetuin, and B. Quesnel. 2005. NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express B7-H1 that stimulates T cells. Blood 105: 2428-2435. https://doi.org/10.1182/blood-2004-09-3458
  26. Kang, K., D. H. Lim, I. H. Choi, T. Kang, K. Lee, E. Y. Moon, Y. Yang, M. S. Lee, and J. S. Lim. 2011. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone- coated silver nanoparticles. Toxicol. Lett. 205: 227-234. https://doi.org/10.1016/j.toxlet.2011.05.1033
  27. Hansen, S. F., E. S. Michelson, A. Kamper, P. Borling, F. Stuer-Lauridsen, and A. Baun. 2008. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17: 438-447. https://doi.org/10.1007/s10646-008-0210-4
  28. Passagne, I., M. Morille, M. Rousset, I. Pujalté, and B. L􀙗azou. 2012. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology 299: 112-124. https://doi.org/10.1016/j.tox.2012.05.010
  29. Napierska, D., L. C. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5: 846-853. https://doi.org/10.1002/smll.200800461
  30. Waters, K. M., L. M. Masiello, R. C. Zangar, B. J. Tarasevich, N. J. Karin, R. D. Quesenberry, S. Bandyopadhyay, J. G. Teeguarden, J. G. Pounds, and B. D. Thrall. 2009. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol. Sci. 107: 553-569. https://doi.org/10.1093/toxsci/kfn250
  31. Lin, W., Y. W. Huang, X. D. Zhou, and Y. Ma. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217: 252-259. https://doi.org/10.1016/j.taap.2006.10.004
  32. Cha, K. E., and H. Myung. 2007. Cytotoxic effects of nanoparticles assessed in vitro and in vivo. J. Microbiol. Biotechnol. 17: 1573-1578.
  33. Choi, S. J., J. M. Oh, and J. H. Choy. 2009. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J. Inorg. Biochem. 103: 463-471. https://doi.org/10.1016/j.jinorgbio.2008.12.017
  34. Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 112: 13608-13619. https://doi.org/10.1021/jp712087m
  35. Park, E. J., J. Yi, K. H. Chung, D. Y. Ryu, J. Choi, and K. Park. 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 180: 222-229. https://doi.org/10.1016/j.toxlet.2008.06.869
  36. Herzog, E., H. J. Byrne, A. Casey, M. Davoren, A. G. Lenz, K. L. Maier, A. Duschl, and G. J. Oostingh. 2009. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol. Appl. Pharmacol. 234: 378-390. https://doi.org/10.1016/j.taap.2008.10.015

Cited by

  1. Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell vol.34, pp.1, 2013, https://doi.org/10.1007/s13277-012-0543-8
  2. RETRACTED ARTICLE: TNF receptor-associated factor 6 regulates proliferation, apoptosis, and invasion of glioma cells vol.377, pp.1, 2012, https://doi.org/10.1007/s11010-013-1573-2
  3. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells vol.30, pp.2, 2014, https://doi.org/10.1007/s10565-014-9271-8
  4. Small Wonders—The Use of Nanoparticles for Delivering Antigen vol.3, pp.3, 2012, https://doi.org/10.3390/vaccines3030638
  5. Why the Immune System Should Be Concerned by Nanomaterials? vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.00544
  6. Role of a novel immune modulating DDR2-expressing population in silica-induced pulmonary fibrosis vol.12, pp.7, 2012, https://doi.org/10.1371/journal.pone.0180724
  7. Combined Action of Human Commensal Bacteria and Amorphous Silica Nanoparticles on the Viability and Immune Responses of Dendritic Cells vol.24, pp.10, 2012, https://doi.org/10.1128/cvi.00178-17
  8. The toxicity of silica nanoparticles to the immune system vol.13, pp.15, 2012, https://doi.org/10.2217/nnm-2018-0076
  9. STING-dependent sensing of self-DNA drives silica-induced lung inflammation vol.9, pp.1, 2012, https://doi.org/10.1038/s41467-018-07425-1
  10. Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype vol.16, pp.1, 2012, https://doi.org/10.1080/1547691x.2019.1584652
  11. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease vol.16, pp.1, 2019, https://doi.org/10.1080/1547691x.2019.1605553
  12. Nanotechnology-based Drug Delivery, Metabolism and Toxicity vol.20, pp.14, 2012, https://doi.org/10.2174/1389200221666200103091753
  13. How to Address the Adjuvant Effects of Nanoparticles on the Immune System vol.10, pp.3, 2012, https://doi.org/10.3390/nano10030425
  14. Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery vol.8, pp.4, 2012, https://doi.org/10.3390/vaccines8040651
  15. Uterine metabolic disorder induced by silica nanoparticles: biodistribution and bioactivity revealed by labeling with FITC vol.19, pp.1, 2012, https://doi.org/10.1186/s12951-021-00810-x
  16. Synthetic Amorphous Silica Nanoparticles Promote Human Dendritic Cell Maturation and CD4+ T-Lymphocyte Activation vol.185, pp.1, 2012, https://doi.org/10.1093/toxsci/kfab120