DOI QR코드

DOI QR Code

Cadmium Sulphide Nanorods: Synthesis, Characterization and their Photocatalytic Activity

  • Giribabu, Krishnamoorthy (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Suresh, Ranganathan (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Manigandan, Ramadoss (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Vijayaraj, Arunachalam (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Prabu, Raju (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus) ;
  • Narayanan, Vengidusamy (Department of Inorganic Chemistry, University of Madras, Guindy Maraimalai Campus)
  • Received : 2012.04.14
  • Accepted : 2012.05.30
  • Published : 2012.09.20

Abstract

Cadmium sulphide (CdS) nanorods were prepared by a single precursor thermal decomposition (SPTD) method. The formation of CdS nanorods and their structure, morphology and elemental composition were studied by means of FT-IR, XRD, FE-SEM, HR-TEM and EDAX analysis. Photoluminescence (PL) and lifetime measurements were recorded to study the luminescence properties of the material. The PL spectrum of the CdS nanorods showed one broad peak and four shoulders and the cause for this emission was discussed. The PL emissions from the band edge and deep trap state of the CdS nanorods were studied by lifetime measurements. Further, the synthesized CdS nanorods showed an increase in efficiency of photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The increase in the photocatalytic activity was attributed to the mixed phase of the CdS nanorods.

Keywords

References

  1. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. https://doi.org/10.1021/cr030063a
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  3. Brus, L. E. Appl. Phys. A: Mater. Sci. Process 1991, 53, 465. https://doi.org/10.1007/BF00331535
  4. Wang, J.; Uma, S.; Klabunde, K. J. Micropor. Mesopor. Mater. 2004, 75, 143. https://doi.org/10.1016/j.micromeso.2004.07.011
  5. Rajeshwar, K.; De Tacconi, N. R.; Chenthamarakshan, C. R. Chem. Mater. 2001, 13, 2765. https://doi.org/10.1021/cm010254z
  6. Wold, A. Chem. Mater. 1993, 5, 280. https://doi.org/10.1021/cm00027a008
  7. Linsebigler, A. L.; Li, G. Q.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 735. https://doi.org/10.1021/cr00035a013
  8. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  9. Macak, J. M.; Zlamal, M.; Krysa, J.; Schmuki, P. Small 2007, 3, 300. https://doi.org/10.1002/smll.200600426
  10. Changlin, Y.; Wanqin, Z.; Kai, Y.; Gan, R. J. Mater. Sci. 2010, 45, 5756. https://doi.org/10.1007/s10853-010-4646-6
  11. Sivaraj, R.; Namasivayam, C.; Kadirvelu, K. Waste Management 2001, 21, 105. https://doi.org/10.1016/S0956-053X(00)00076-3
  12. Nacera, Y.; Aicha, B. Chem. Eng. J. 2006, 119, 121. https://doi.org/10.1016/j.cej.2006.01.018
  13. Xiangqing, L.; Yin, D.; Kang, S.; Mu, J.; Wang, J.; Li, G. Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 384, 749. https://doi.org/10.1016/j.colsurfa.2011.04.028
  14. Tito, T.; Brien, P.; Zhang, X. Chem. Mater. 1997, 9, 523. https://doi.org/10.1021/cm960363r
  15. Kumar, M. S.; Nillohit, M.; Anup, M.; Adhikary, B.; Karmakar, B.; Dutta, S. Inorg. Chim. Acta 2011, 371, 20. https://doi.org/10.1016/j.ica.2011.02.093
  16. Zhiguo, L.; Jiehe, S.; Xiaoli, L.; Wei, C. Langmuir 2011, 27, 2258. https://doi.org/10.1021/la1043552
  17. Rajasekhar, P. V. S. R.; Scriba, M.; Revaprasadu, N. J. Nanosci. Nanotech. 2011, 11, 1201. https://doi.org/10.1166/jnn.2011.3069
  18. Peter, A. A.; Damian, C. O.; Makwena, J. M. Polyhedron 2011, 30, 246. https://doi.org/10.1016/j.poly.2010.10.023
  19. Akram, H.; Reza, M. A. J. Mol. Struc. 2011, 985, 270. https://doi.org/10.1016/j.molstruc.2010.11.007
  20. Barreca, D.; Gasparotto, A.; Maragno, C.; Seraglia, R.; Tondello, E.; Venzo1, A.; Krishnan, V.; Bertagnolli, H. Appl. Organometal. Chem. 2005, 19, 1002. https://doi.org/10.1002/aoc.948
  21. Pradhan, N.; Katz, B.; Efrima, S. J. Phys. Chem. B 2003, 107, 13843. https://doi.org/10.1021/jp035795l
  22. Sahu, N.; Arora, M. K.; Upadhyay, S. N.; Sinha, A. S. K. Ind. Eng. Chem. Res. 1998, 37, 4682. https://doi.org/10.1021/ie980237s
  23. Park, H.; Kim, Y. K.; Choi, W. J. Phys. Chem. C 2011, 115, 6141. https://doi.org/10.1021/jp2015319
  24. Li, G.; Li, J.; Peng, H.; Zhang, B. Mater. Lett. 2008, 62, 1881. https://doi.org/10.1016/j.matlet.2007.10.029
  25. Ji, X.; Li, H.; Cheng, S.; Wu, Z.; Xie, Y.; Dong, X.; Yan, P. Mater. Lett. 2011, 65, 2776. https://doi.org/10.1016/j.matlet.2011.06.003
  26. Chrysochoos, J. J. Phys. Chem. 1992, 96, 2868.
  27. Mazher, J.; Badwe, S.; Sengar, R.; Gupta, D.; Pandey, R. K. Physica E 2003, 16, 209. https://doi.org/10.1016/S1386-9477(02)00664-1
  28. Wu, F.; Zhang, J. Z.; Kho, R.; Mehra, R. K. Chem. Phys. Lett. 2000, 330, 237. https://doi.org/10.1016/S0009-2614(00)01114-3
  29. Neelakandeswari, N.; Sangami, G.; Dharmaraj, N.; Taek, N. K.; Kim, H. Y. Spectrochim. Acta Part A: Mol. Biomol. Spectro. 2011, 78, 1592. https://doi.org/10.1016/j.saa.2011.02.008
  30. Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. J. Photochem.Photobiol. A: Chem. 2001, 140, 163. https://doi.org/10.1016/S1010-6030(01)00398-7
  31. Zhang, T.; Oyama, T.; Horikoshi, S.; Hidaka, H.; Zhao, J.; Serpone, N. Sol. Energy Mater. Sol.Cells 2002, 73, 287. https://doi.org/10.1016/S0927-0248(01)00215-X
  32. Wu, L.; Yu, J. C.; Fu, X. J. Mol. Catal. A: Chem. 2006, 244, 25. https://doi.org/10.1016/j.molcata.2005.08.047
  33. Chen, F.; Zhao, J.; Hidaka, H. Int. J. Photoenergy 2003, 5, 209. https://doi.org/10.1155/S1110662X03000345
  34. Priyam, A.; Chatterjee, A.; Das, S. K.; Saha, A. Chem. Commun. 2005, 4122.

Cited by

  1. α-Fe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property vol.11, pp.3, 2014, https://doi.org/10.1007/s13738-013-0335-0
  2. Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents vol.17, pp.3, 2015, https://doi.org/10.1007/s11051-015-2961-1
  3. /CdS Core-Shell Nanocomposite vol.2015, pp.2314-7490, 2015, https://doi.org/10.1155/2015/690568
  4. Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules vol.123, pp.6, 2017, https://doi.org/10.1007/s00339-017-1013-3
  5. P-Nitrophenol Degradation Using N-Doped Reduced Graphene-CdS Nanocomposites pp.18626300, 2018, https://doi.org/10.1002/pssa.201700618
  6. /CdS nanorods with very high photocatalytic activity for hydrogen production under visible-light excitation and investigation of the photocatalytic mechanism by femtosecond transient absorption spectroscopy vol.7, pp.88, 2017, https://doi.org/10.1039/C7RA12118K
  7. gas sensing properties vol.42, pp.6, 2018, https://doi.org/10.1039/C7NJ04593J
  8. Quantum confined CdS inclusion in graphene oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell vol.5, pp.22, 2012, https://doi.org/10.1039/c4ra13061h
  9. BiVO4 nanoparticles: Preparation, characterization and photocatalytic activity vol.1, pp.1, 2012, https://doi.org/10.1080/23312009.2015.1074647
  10. Structural tuning of CdS nanoparticles with nucleation temperature and its reflection on the optical properties vol.1094, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2015.04.003
  11. Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water vol.279, pp.None, 2012, https://doi.org/10.1016/j.cej.2015.04.069
  12. Estimation of structural and mechanical properties of Cadmium Sulfide/PVA nanocomposite films vol.5, pp.6, 2019, https://doi.org/10.1016/j.heliyon.2019.e01851
  13. Investigation of surface interaction in rGO-CdS photocatalyst for hydrogen production: An insight from XPS studies vol.46, pp.53, 2021, https://doi.org/10.1016/j.ijhydene.2021.05.173