DOI QR코드

DOI QR Code

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • Received : 2012.04.27
  • Accepted : 2012.06.08
  • Published : 2012.09.20

Abstract

Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.

Keywords

References

  1. Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. https://doi.org/10.1038/35104644
  2. Bishop, A. G.; Macfarlane, D. R.; McNaughton, D.; Forsyth, M. J. Phys. Chem. 1996, 100, 2237. https://doi.org/10.1021/jp9520456
  3. Quartarone, E.; Mustarelli, P.; Magistris, A. Solid State Ionics 1998, 110, 1. https://doi.org/10.1016/S0167-2738(98)00114-3
  4. Liu, J.; Huang, X.; Duan, J.; Ai, H.; Tu, P. Mat. Lett. 2005, 59, 3710. https://doi.org/10.1016/j.matlet.2005.06.043
  5. Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; Wiley: New York, 1970.
  6. Wunderlich, B. Macromolecular Physics; Academic Press: New York, 1980, 3, 67.
  7. Papke, B. L.; Ratner, M. A.; Shriver, D. F. J. Electrochem. Soc. 1982, 129, 1434. https://doi.org/10.1149/1.2124179
  8. Wen, S. J.; Richrdson, T. J.; Ghantous, D. I.; Striebel, K. A.; Ross, P. N.; Cairns, E. J. J. Electroanal. Chem. 1996, 408, 113. https://doi.org/10.1016/0022-0728(96)04536-6
  9. Fan, L.; Dang, Z.; Wei, G.; Wen, N. C.; Li, M. Mater. Sci. and Eng. B 2003, 99, 340. https://doi.org/10.1016/S0921-5107(02)00487-7
  10. Maier, J. Solid State Ionics 1994, 70-71, 43. https://doi.org/10.1016/0167-2738(94)90285-2
  11. Maier, J. Prog. Solid State Chem. 1995, 23, 171. https://doi.org/10.1016/0079-6786(95)00004-E
  12. Wieczorek, W.; Raducha, D.; Zalewska, A. J. Phys. Chem. B 1998, 102, 8725. https://doi.org/10.1021/jp982403f
  13. Sharma, J. P.; Sekhon, S. S. Solid State Ionics 2007, 178, 439. https://doi.org/10.1016/j.ssi.2007.01.017
  14. Hashmi, S. A.; Upadhayaya, H. M.; Thakur, A. K. Solid State Ionics: Materials and Devices; Chodari, B. V. R., Wang, W., Eds.; World Scientific: Singapore, 2000; p 461.
  15. Pandey, G. P.; Hashmi, S. A.; Agrawal, R. C. Solid State Ionics 2008, 179, 543. https://doi.org/10.1016/j.ssi.2008.04.006
  16. Kumar, B. J. Power Sources 2004, 135, 215. https://doi.org/10.1016/j.jpowsour.2004.04.038
  17. Kumar, B.; Nellutla, S.; Thokchom, J. S.; Chen, C. J. Power Sources 2006, 160, 1329. https://doi.org/10.1016/j.jpowsour.2006.02.062
  18. Tsunemi, K.; Ohno, H.; Tsuchida, E. Electrochem. Acta 1983, 28(6), 833. https://doi.org/10.1016/0013-4686(83)85155-X
  19. Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T. J. Phys. and Chem. of Sol. 2007, 68, 407. https://doi.org/10.1016/j.jpcs.2006.12.001
  20. Cowie, J. M. G.; Spence, G. H. Solid State Ionics 1998, 109, 139.
  21. Awadhia, A.; Patel, S. K.; Agrawal, S. L. Prog. in Crystal Growth and Character. of Mater. 2006, 52, 61. https://doi.org/10.1016/j.pcrysgrow.2006.03.009
  22. Finch, C. A. Polyvinyl Alcohol: Properties and Applications; John Wiley; Sons Ltd., London, 1973.
  23. Singh, K. P.; Gupta, P. N.; Singh, R. P. J. Polym. Mater. 1992, 9, 131.

Cited by

  1. = 4)) on Thermal, Mechanical, and Electrical Properties of PEO-Based Solid Polymer Electrolytes vol.36, pp.2, 2017, https://doi.org/10.1002/adv.21581
  2. Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications vol.21, pp.5, 2017, https://doi.org/10.1007/s10008-016-3477-z
  3. Effect of Al2O3 nanofiller on the electrical, thermal and structural properties of PEO:PPG based nanocomposite polymer electrolyte vol.23, pp.6, 2017, https://doi.org/10.1007/s11581-017-1976-2
  4. Effect of Al2O3 Nanofiller on ion conductivity, transmittance, and glass transition temperature of PEI:LiTFSI:PC:EC polymer electrolytes vol.24, pp.1, 2017, https://doi.org/10.1007/s10965-016-1172-5
  5. Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films vol.24, pp.3, 2017, https://doi.org/10.1007/s10965-017-1218-3
  6. Impedance Spectroscopy as a Novel Approach to Probe the Phase Transition and Microstructures Existing in CS:PEO Based Blend Electrolytes vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32662-1
  7. Enhanced properties of Gamma irradiated nano spinels containing cobalt and alumnium ions : Effect of Gamma radiation on structure, electrical, magnetic and thermal stability properties pp.1862-0760, 2018, https://doi.org/10.1007/s11581-018-2676-2
  8. Polymer-spinel ferrite composite containing nickel, magnesium, and nickel-magnesium ions: Structural, magnetic, electrical, and thermal stability properties vol.37, pp.8, 2018, https://doi.org/10.1002/adv.22155
  9. Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries applic vol.25, pp.6, 2012, https://doi.org/10.1007/s11581-018-2802-1
  10. Increase of metallic silver nanoparticles in Chitosan:AgNt based polymer electrolytes incorporated with alumina filler vol.13, pp.None, 2012, https://doi.org/10.1016/j.rinp.2019.102326
  11. Zinc ion conducting blended polymer electrolytes based on room temperature ionic liquid and ceramic filler vol.136, pp.24, 2012, https://doi.org/10.1002/app.47654
  12. Structure and Properties of Nanocomposites Prepared via the Environmental Crazing of Poly(ethylene terephthalate) in Solutions of Polyelectrolyte Complexes vol.89, pp.10, 2012, https://doi.org/10.1134/s1070363219100165
  13. Synthesis, Characterization, and Applications of Polymer Nanocomposites vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5439136
  14. Solid Electrolytes for Li-S Batteries: Solid Solutions of Poly(ethylene oxide) with LixPON- and LixSiPON-Based Polymers vol.12, pp.27, 2012, https://doi.org/10.1021/acsami.0c06196
  15. Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt vol.13, pp.5, 2012, https://doi.org/10.3390/polym13050707
  16. Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries vol.4, pp.5, 2012, https://doi.org/10.1021/acsaem.1c00216
  17. Increase of Solid Polymer Electrolyte Ionic Conductivity Using Nano-SiO2 Synthesized from Sugarcane Bagasse as Filler vol.13, pp.23, 2012, https://doi.org/10.3390/polym13234240