DOI QR코드

DOI QR Code

제올라이트에 의한 말라카이트 그린의 흡착특성

Adsorption Characteristics of Malachite Green on Zeolite

  • 이종집 (공주대학교 화학공학부) ;
  • 엄명헌 (공주대학교 화학공학부)
  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University) ;
  • Um, Myeong-Heon (School of Chemical Engineering, Kongju National University)
  • 투고 : 2012.07.05
  • 심사 : 2012.08.03
  • 발행 : 2012.09.30

초록

말라카이트 그린은 염료로 사용되지만 유해한 독성 물질이다. 본 연구에서는 제올라이트에 의한 말라카이트 그린의 흡착특성을 조사하였다. 일정한 양의 제올라이트에 대해 초기농도, 접촉시간, pH 및 흡착온도 등이 말라카이트 그린의 흡착에 미치는 영향을 회분식 및 칼럼흡착실험을 통하여 연구하였다. 회분식흡착실험을 통해 흡착등온선을 구한 결과 말라카이트 그린의 흡착평형관계는 $25{\sim}45^{\circ}C$ 범위에서 Freundlich 식이 잘 적용되었다. 흡착등온식으로 부터 평가된 k와 ${\beta}$ 값은 각각 23.60~46.88, 0.225~0.347이었다. 입자내 확산모델을 사용하여 흡착기구를 결정하였다. 고정층의 운전조건이 파과곡선에 미치는 영향을 조사하였다. 말라카이트 그린의 유입농도와 초기유속이 증가함에 따라 파과시간은 감소하였다. 층높이가 증가함에 따라 파과시간이 증가하였는데, 흡착대의 길이는 비슷한 양상을 나타냈다.

Malachite green is used a dye but malachite green is harmful toxic substance. In this study, the adsorption characteristics of zeolite has been investigated for the adsorption of malachite green dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of malachite green by a fixed amount of zeolite have been studied in batch adsorber and fixed bed. The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 25 to $45^{\circ}C$. The estimated values of k and ${\beta}$ are 23.60-46.88, 0.225-0.347, respectively. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet concentration and initial flow rate of malachite green are increased, the corresponding adsorption breaktime appears to decrease. Breaktime increased with increasing bed height and length of adsorption zone showed similar patterns.

키워드

참고문헌

  1. Blackburn, R., "Natural Polysaccarides and Their Interaction with Dye Molecules : Applications in Effluent Treatment," Environ. Sci. Technol., 38, 4905-4909 (2004). https://doi.org/10.1021/es049972n
  2. Korea Food & Drug Administration, Malachite Green Risk Profile, 1st ed., Seoul, 2010, pp. 3-6.
  3. Tang, H., Zhou, W., and Zhang, L., "Adsorption Isotherms and Kinetics Studies of Malachite Green on Chitin Hydrogels," J. Hazard. Mater., 209, 218-225 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.010
  4. Ahmad, R., and Kumar, R., "Adsorption Studies of Hazardous Malachite Green onto Treated Ginger Waste," J. Environ. Manage., 91, 1032-1038 (2010). https://doi.org/10.1016/j.jenvman.2009.12.016
  5. Gupta, V. K., Mittal, A., Krisnan, L., and Grajbe, V., "Adsorption Kinetics and Column Operations for the Removal and Recovery of Malachite Green from Wastewater Using Bottom Ash," Sep. Purif. Technol., 40, 87-96 (2004). https://doi.org/10.1016/j.seppur.2004.01.008
  6. Onalnal, Y., BaSar, C. A., Eren, D., Onalzdemir, C. S., and Deoci, T., "Adsorption Kinetics of Malachite Green onto Activated Carbon Prepared from Tunçbilek Lignite," J. Hazard. Mater., B128, 150-157 (2006).
  7. Tian, Y., Lin, P., Wang, X., and Lin, H., "Adsorption of Malachite Green from Aqueous Solutions onto Ordered Mesoporous Carbons," J. Chem. Eng., 171, 1263-1269 (2011). https://doi.org/10.1016/j.cej.2011.05.040
  8. Lee, J. J., "Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite green Using Zeolite," Clean Technol., 18(1), 76-82 (2012). https://doi.org/10.7464/ksct.2012.18.1.076
  9. Thermo Fisher Scientific Inc., MSDS Malachite Green, Hamburg, 2007, pp. 1-10
  10. Samiey, B., and DArgahi, M., "Kinetics and Thermodynamics of Adsorption Congo Red on Cellulose," Central EurJ. Chem., 8, 906-912 (2010) https://doi.org/10.2478/s11532-010-0055-6
  11. Gupta, V. K., Mittal, A., and Gajbe, V., "Adsorption and Desorption Studies of a Water Soluble Dye, Quinoline Yellow, Using Waste Materials," J. Colloid Interf. Sci., 284, 89-98 (2005). https://doi.org/10.1016/j.jcis.2004.09.055
  12. Kana, N., and Sundaram, M. M., "Kinetics and Mechanism of Removal on Methylene Blue by Adsorption on Various Carbons-a Comparative Study," J. Dyes Pig., 51, 25-40 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  13. Hameed, B., and El-Khaiary, M., "Kinetics and Equilibrium Studies of Malachite Green Adsorption on Rice Straw-Derived Char," J. Hazard. Mater., 153, 701-708 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.019
  14. Ko, W. S., Shim, H. H., Yoo, I. Z., Lee, J. J., and Heo, K. S., Unit Operation, 2nd ed., Bomondang, Seoul, 2005, pp. 273-274.
  15. Carberry, J. J., "A boundary-Layer Model of Fluid-Particle Mass Transfer in Fixed Bed," AIChE J., 6, 460-463 (1960). https://doi.org/10.1002/aic.690060323
  16. Hayduk, W., and Laudie, W., "Prediction of Diffusion Coefficients for Nonelectrolytes in Dilute Aqueous Solutions," AIChE. J., 20, 611-615 (1974). https://doi.org/10.1002/aic.690200329
  17. Kim, J. H., Jeong, Y. O., and Pendleton, P., "Adsorption Kinetics of Anioinc Surfactants onto Activated carbon in Fixed Bed," J. Ind. Eng. Chem., 10(6), 1025-1032 (2004).
  18. Ahmad, A. A., and Hameed, B. H., "Fixed-Bed Adsorption of Eeactive Azo Dye onto Granular Activated Carbon Prepared from Waste," J. Hazard. Mater., 175, 298-303 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.003