
http://dx.doi.org/10.5573/JSTS.2012.12.3.370 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.3, SEPTEMBER, 2012 

 

 

 

Process Considerations for 80-GHz High-Performance 

p-i-n Silicon Photodetector for Optical Interconnect   
 

Seongjae Cho*, Hyungjin Kim**, Min-Chul Sun**, Byung-Gook Park**, and James S. Harris, Jr.*  
 

 

 

 

Abstract—In this work, design considerations for high-

performance silicon photodetector are thoroughly 

investi- gated. Besides the critical dimensions of 

device, guidelines for process architecture are 

suggested. Abiding by those criteria for improving 

both direct-current (DC) and alternating-current 

(AC) perfor- mances, a high-speed low-operation 

power silicon photodetector based on p-i-n structure 

for optical interconnect has been designed by device 

simulation. An f-3dB of 80 GHz at an operating voltage 

of 1 V was obtained.    

 

Index Terms—Silicon photodetector, p-i-n structure, 

optical interconnect, device simulation    

I. INTRODUCTION 

Optical interconnect is gaining more popularity as a 

next-generation interconnect technology for the highly 

integrated circuits (ICs) due to its capability of 

minimizing RC-delay, power consumption, and heat 

dissipation [1]. It has a very wide range of applications 

from device/chip/board-level interconnects up to teleco- 

mmunication systems. Optical interconnect includes not 

only the waveguide itself but also light-emitting diode 

(LED) or laser as the light source, modulator, and 

photodetector. Integration on silicon (Si) substrate is 

strongly pursued owing to cost-effectiveness and 

complementary metal-oxide-semiconductor (CMOS) 

process compatibility [2-6], which makes it essential to 

exploit Si-compatible materials, structures, and process 

architecture highly suitable to integration with Si ICs.  

In this work, a high-performance p-i-n photodetector 

for optical interconnect is designed to have 80-giga hertz 

(GHz) cut-off frequency (f-3dB) and device performance 

dependence on process parameters are closely investigated.  

II. DEVICE STRUCTURE AND SIMULATION 

Fig. 1(a) and (b) schematically show the ways that 

photodetectors are coupled to the waveguides in the 

optoelectronic integrated circuits (OEICs) eventually.  

The pass-through type operated by evanescent wave 

coupling is known to have higher responsivity compared 

with butt-coupled type [1, 7, 8]. The former type is more 

strategic to achieve highly-scaled OEICs, especi- ally 

when it comes to a design for cooperating with processor 

and memory cores at a comparable integration level or a 

large number of interaction routes. Also, the responsivity 

of the former can be enhanced by design as a function of 

device length (in the waveguide direction), which is 

another merit of the vertically coupled photode- tector.  

Being initiated by a couple of motivations above, two-

dimensional (2-D) simulation works have been 

performed to design and characterize p-i-n Si photode- 

tector [9], aiming the vertical integration. For 

convenience in the simulation and evaluation, beam line 

with a power of 1 W/cm2 incident from the top has been 

assumed throughout the simulation works. The effects of 

anode junction depth (Xaj), cathode junction depth (Xcj), 

width and thickness of device cross-section (shown in 
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Fig. 2) on direct-current (DC) and alternating-current 

(AC) performances – largely on photocurrent and speed 

– have been investigated. The length in the 2-D 

simulations was invariable and fixed to a unit value of 1 

µm. Total photocurrent can be simply scaled up 

according to the actual device length. p-i-n diode 

photodetector has a response time of 10-10–10-8 s, which 

is suitable for high-speed photodetector [10]. Also, 

device performances can be easily controlled by 

adjusting the thickness of intrinsic region, with securing 

robustness against other process fluctuations.  

For higher simulation accuracy and reliability, multiple 

models including Shockley-Read-Hall recombination 

model, Auger recombination model, concentration and 

field-dependent mobility models, band-to-band tunneling 

model, and quantum-effect model were combined in use.  

III. SIMULATION RESULTS 

1. DC Characteristics 

 

It was assumed that p+ anode, intrinsic region, and n+ 

cathode were epitaxially grown in order to minimize 

unrecovered lattice damages by ion implantation and to 

predict the doping profile more tangibly. Thus, more 

strictly speaking, anode junction depth (Xaj) consists of 

two parts: thickness of epitaxial Si layer with constant n+ 

in situ doping and doping gradient length. The epitaxial 

layer thickness is termed as anode thickness in Fig. 3, 

where its effect on cathode current (IC) can be studied. 

The doping of the layer was arsenic (As) 1×1020 cm-3 and 

the doping gradient length (distance from As 1×1020 cm-3 

to 1×1012 cm-3 in the Gaussian distribution) was kept to 

be 100 nm. The effect of anode thickness on IC was not 

significant. As the epitaxial layer gets thick, increases in 

the currents were observed since there was increase in 

the number of optically generated electrons in the 

 

(a) 
 

 

(b) 

Fig. 1. Waveguide-coupled photodetectors (a) Evanescent-

coupling (vertical), (b) butt-coupling type (in-plane).  

 

 

Fig. 2. Design parameters in the 2-D simulation works. 

 

 

Fig. 3. Cathode current (IC) versus optical wavelength (λ) at 

different anode thicknesses (gradient length=100 nm).  
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thickened layer, but the amount was negligibly small as 

shown in Fig. 3. The cathode thickness and its doping 

gradient length were kept to be constant as 200 nm and 

100 nm (Xcj = 300 nm).  

For the following simulation results, anode and 

cathode thicknesses were made 50 nm and 200 nm, 

respectively. While an external contact can be directly 

made on anode, there should be an accompanying 

isotropic etch to form the cathode contact, as could be 

predicted by Fig. 1(a). Since there is no significant effect 

of junction thickness on photocurrent (Fig. 3), the anode 

can be made thin to reduce material growth time, but the 

cathode was made thick enough (200 nm) including a 

margin for the etching.  

It is confirmed from Fig. 3 that a large amount of 

photocurrent occurs by a light with energy higher that the 

bandgap energy (EG) of Si (=1.12 eV), or equivalently, a 

light with optical wavelength shorter than λ=1.24/EG = 

1.11 µm. Dark current of a photodetector is defined as 

the leakage diode current under an operating reverse bias 

with no optical source. It can be also checked in Fig. 3 at 

the region of very long wavelength, which is about 10 

fA/µm. There is small amount of current starting from λ 

= 2 µm down to λ=1.2 µm. A wavelength of 2 µm does 

not have a specific meaning that can be inferred from 

energy-band structure of Si. The current is resulted from 

instantaneous excitation by an optical energy smaller 

than 1.12 eV and simultaneous tunneling into the 

conduction band of n+ Si region by a high electric field, 

which is called optically-assisted band-to-band tunneling. 

The reverse bias (VR) was 2 V and the thickness of 

intrinsic Si was 1 µm for all cases in Fig. 3. Thus, the 

resulting electric field is 2×104 V/cm. If well-designed 

peripheral circuits for amplifying the photocurrent are 

accompanied, Si light source and Si detector can be 

paired. However, due to the slow increase in 

photogeneration near the energy bandgap of Si, an 

indirect bandgap material, a light source with energy 

larger than EG of Si, can be desirable to be targeted. 

Fig. 4(a) and (b) show the cathode current as a 

function of optical wavelength under different bias 

conditions. The cathode currents in the regions governed 

by the optical excitation (below λ=2 µm) are not 

dependent on VR. Only the dark current is increased with 

VR since it is mainly composed of reverse current of p-i-n 

diode when there is no photogeneration, as shown in Fig. 

4(a). When a negative VR (forward bias, VF) is applied, 

forward current becomes prominent, which is represented 

by the flat regions in IC-λ curves shown in Fig. 4(b). The 

change in current polarity occurs at the dips. The larger 

the VF (-VR=|VR|) is, the less sensitive the device becomes 

for longer wavelength lights: narrower window of 

sensible wavelengths is opened as the VF is increased 

while the photocurrent is buried in the forward current 

and is not observable any more. However, it is noticeable 

that VF smaller than 0.3 V is in a permissible range since 

the forward current does not exceed the photocurrent 

near λ=1.2 µm and the Si photodetector is still 

distinguishably responsive to the lights of energies larger 

than Si EG.  

It is confirmed that p-i-n Si photodetector has a wide 

operation voltage window, including even a small 

forward bias, and its DC characteristics are not 

dependent on voltage magnitude under reverse bias 

conditions. The merit is secured by controlling the 

thickness of intrinsic Si layer and potentially leads to 

low-power operation.  

As previously mentioned, it is desirable to grow the 

layers epitaxially with in situ doping to minimize lattice 

damages by ion implantation and unwanted dopant 

diffusions distorting the junction locations by a following 

rapid thermal annealing (RTA) process. Fig. 5 shows the 

effect of doping gradient length on IC. The doping 

gradient lengths were assumed to be the same for anode 

and cathode junctions. For a device with abrupt junctions, 

a significant amount of leakage current by band-to-band 

 

                  (a)                          (b) 

Fig. 4. IC-λ curves under (a) reverse, (b) forward biases 

(Thickness of intrinsic Si=1 µm, doping gradient length=50 

nm). 
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tunneling is observed. Even a doping gradient length as 

short as 10 nm is effectual in suppressing the leakage 

current by widening the effective tunneling length. 

Dependence of IC on doping gradient length is not so 

prominent but IC is slightly reduced as the length gets 

wider due to the resistance of the elongated region. 

Although the layers are assumed to be grown by epitaxy, 

it should be valuable to take the effects of doping 

gradient length into account when designing thermal 

budgets either in the material growth or the additional 

annealing process.  

 

2. AC Characteristics 

 

In the previous section, DC characteristics of the p-i-n 

Si photodetector depending on several critical dimensions 

were investigated. Since the carriers require a finite time 

to traverse the intrinsic layer, a phase difference between 

the photon flux and the photocurrent will appear when 

the incident light intensity is modulated rapidly. Some 

critical dimensions of device affects the AC characteristics.  

Among the parameters that can be taken into 

consideration, thickness of the Si intrinsic layer was 

omitted by intent. It physically appears as the distance 

between anode and cathode electrodes, which is closely 

related with transit time of the photo-generated electrons. 

Thus, optimizing process in terms of AC performances 

rather than DC characteristics would be more decisive if 

the device is intended for high-speed application in the 

optical interconnect. For DC characteristics, it is predic- 

table that photocurrent would decrease as the intrinsic 

layer gets thinner due to volume reduction for 

photogeneration since the layers are assumed to be 

grown vertically and the two electrodes are also stacked.  

Fig. 6(a) and (b) demonstrate the AC characteristics of 

the photodetector with different thicknesses of intrinsic 

Si layers. Each simulation was performed under a 

condition with VR=2.0 V, DC and AC beam powers = 1 

W/cm2 and 2 mW/cm2, respectively. The wavelength of 

incident light, λ=1 µm, was arbitrarily selected from a 

sensible wavelength range. The thickness was varied 

from 10 µm down to 200 nm with a doping gradient 

length of 50 nm. The cut-off frequency (f-3dB) increased 

monotonically as the intrinsic layer got thinner, as shown 

in Fig. 6(a). The frequency response of the photodetector 

reveals that it shows characteristics of low-pass filter 

(LPF), so f-3dB can be equivalently understood as its 

bandwidth (BW). Fig. 6(b) depicts f-3dB’s as a function of 

 

Fig. 5. Cathode currents at different doping gradient lengths 

(Thickness of intrinsic Si=1 µm, VR=1 V). 

 

 

 

 

(a) 
 

 

(b) 

Fig. 6. Frequency response of the p-i-n Si photodetector (a) 

Normalized response, (b) f-3dB versus intrinsic Si thickness.  
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the thickness, from which it is revealed that the intrinsic 

layer should be 1.5 µm or thinner to have a BW wider 

than 10 GHz. For an ultrafast operation of near-100 GHz, 

the intrinsic Si layer should not be thicker than 200 nm. 

Reduction in photo-current is expected in a thin device 

but it can be enhanced by scaling-up in the length 

direction keeping the thickness as designed for achieving 

a specific speed.  

Fig. 7 demonstrates the dependence of f-3dB on VR and 

doping gradient length simultaneously. Higher VR results 

in higher electric field and electron drift velocity (vd), by 

which the response of the photodetector becomes faster. 

The thickness of intrinsic Si layer was 2 µm in Fig. 7, so 

5.0-V VR is equivalent to an electric field of 2.5×104 

V/cm, where vd reaches 90% of the saturation velocity 

(vsat). From a viewpoint of AC performance, a doping 

gradient length needs to be 20 nm or longer. With a 

doping gradient length shorter than this value, negative 

currents were induced in the high-frequency region, 

which means that the photocurrent lags behind the photo-

flux by π rad.  

This complements the results that a nonnegative 

doping profile is necessary for prevent band-to-band 

tunneling leakage from occurring in the DC performance. 

The influence of doping gradient length is not predo- 

minant to f-3dB as can be confirmed in Fig. 7. However, it 

should be reminded that an upper limit is indispensible 

for minimizing the loss of DC photocurrent. Table 1 

summarizes the specifications of a high-speed low-

operation power Si photodetector designed by the criteria. 

 

IV. CONCLUSIONS 

Photodetector is one of the core components for 

optical interconnect. Silicon-on-insulator (SOI) is a good 

platform for Si photonics by virtue of the efficient optical 

confinement by the large difference in refractive indices 

of Si and SiO2. For this reason, we assumed the SOI 

platform to carry out this study. However, exploiting new 

material systems adoptable for its realization on bulk-

silicon for cost-effective technologies and more viable 

integration with complementary metal-semiconductor-

oxide (CMOS)-based circuits needs to be pursued in 

parallel. Process parameters and critical dimensions for 

high-performance p-i-n Si photodetector and their effects 

have been thoroughly investigated. Abiding by the 

design rules, a high-speed low-power operating device 

has been designed by series of device simulations. f-3dB of 

80.1 GHz and responsivity of 0.34 A/W (which is 

converted to a quantum efficiency of 0.81) obtained from 

the designed photodetector with unit length at 1-V 

operating voltage.  
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Table 1. Specifications of the designed p-i-n Si photodetector 

Design Parameters Values 

Process Parameters 

Anode Layer Thickness 50 nm 

Anode Doping Gradient Length 20 nm 

Intrinsic Layer Thickness 200 nm 

Cathode Doping Gradient Length 20 nm 

Cathode Layer Thickness 200 nm 

Device Width 5 µm 

Device Length (Unit Length) 1 µm 

DC and AC Performances 

Operation Voltage 1 V 

Photocurrent (Unit Length) 17 nA 

Bandwidth (1 V) 80.1 GHz 

Bandwidth (5 V) 84.9 GHz 

Responsivity (Unit Length) 0.34 A/W 

Dark Current (Unit Length) 1.39 fA 

 

 

 

 

Fig. 7. Bias and doping gradient length effects on AC 

performance.  
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