DOI QR코드

DOI QR Code

Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa

녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석

  • Park, Su-Jin (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Kim, Soo-Kyoung (Department of Pharmacy, College of Pharmacy, Pusan National University) ;
  • Lee, Joon-Hee (Department of Pharmacy, College of Pharmacy, Pusan National University)
  • 박수진 (부산대학교 약학대학 약학과 미생물학 연구실) ;
  • 김수경 (부산대학교 약학대학 약학과 미생물학 연구실) ;
  • 이준희 (부산대학교 약학대학 약학과 미생물학 연구실)
  • Received : 2012.08.31
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

Pseudomonas aeruginosa, a Gram-negative bacterium, is an ubiquitous and opportunistic human pathogen, which expresses many virulence factors through quorum sensing (QS) regulation. QscR, one of the QS signal receptors of P. aeruginosa, has unique features that make it possible to distinguish QscR from other QS receptors. In the present study, we focused on amino acid residues responsible for such a broad signal specificity of QscR. Thus we constructed mutant QscRs: $QscR_{T72I}$, $QscR_{R132M}$, and $QscR_{T140I}$ by substituting $72^{nd}$ threonine, $132^{nd}$ arginine, and $140^{th}$ threonine residues with isoleucine, methionine, and isoleucine, respectively by site-directed mutagenesis. When we examined the activity of these mutant QscRs, $QscR_{R132M}$ failed to respond to N-3-oxododecanoyl homoserine lactone (3OC12-HSL), but $QscR_{T72I}$ and $QscR_{T140I}$ remained the ability to respond to 3OC12-HSL despite much reduction of the sensitivity. When we treated a variety of acyl-HSLs with different structure, $QscR_{T72I}$ and $QscR_{T140I}$ showed better responsiveness to N-decanoyl HSL (C10-HSL) or N-dodecanoyl HSL (C12-HSL) that has no oxo-moiety at $3^{rd}$ carbon of acyl group than to 3OC12-HSL, and $QscR_{R132M}$ showed no responsiveness to any acyl-HSLs tested here. In addition, $QscR_{T72I}$ and $QscR_{T140I}$ were inhibited by 5f, a QscR inhibitor as similarly as wild type QscR was. These results suggest that while the $130^{th}$ arginine is crucial in both activity and acyl-HSL binding of QscR, the $72^{nd}$ and $140^{th}$ threonines are important in the activity, but they are little responsible for the discrimination of acyl-HSLs or competitive inhibitor.

그람 음성균인 녹농균(Pseudomonas aeruginosa)은 다양한 환경에 존재하는 기회감염성 병원균으로, 병원성의 발현에 쿼럼센싱(QS) 기전이 중요한 역할을 담당한다. 녹농균의 여러 QS 신호물질 수용체들 중 하나인 QscR은 다른 QS 수용체들과는 구분되는 특별한 특성들을 가진다. 본 연구에서는 이러한 특성들 중 특히 넓은 신호물질 특이성을 QscR에 부여해 주는 아미노산 잔기가 무엇인지 알아보기 위해, QscR의 72번째 threonine, 132번째 arginine, 140번째 threonine 잔기가 각각 isoleucine, methionine, isoleucine 잔기로 치환된 돌연변이 QscR들($QscR_{T72I}$, $QscR_{R132M}$, $QscR_{T140I}$)을 제조하였다. 이들의 활성을 측정해 보았을 때 $QscR_{R132M}$은 N-3-oxododecanoyl homoserine lactone (3OC12-HSL)에 대한 반응성이 사라졌고, $QscR_{T72I}$$QscR_{T140I}$는 민감성이 많이 감소하기는 하였으나 여전히 3OC12-HSL에 대한 반응성을 가지고 있었다. 이들 돌연변이 QscR들에 다양한 구조의 acyl-HSL을 처리해 보았을 때, $QscR_{T72I}$$QscR_{T140I}$는 야생형 QscR처럼 자기 자신의 신호물질인 3OC12-HSL 보다 N-decanoyl HSL (C10-HSL)이나 N-dodecanoyl HSL (C12-HSL)처럼 10개 혹은 12개의 탄소 사슬을 가지면서 3번째 탄소에 oxo-moiety가 없는 acyl-HSL에 대해 더 높은 반응성을 보였으며, $QscR_{R132M}$은 3OC12-HSL 뿐만 아니라 본 연구에서 사용된 어떤 acyl-HSL에도 반응성을 보이지 않았다. 또한 $QscR_{T72I}$$QscR_{T140I}$는 QscR 억제제인 5f에 의해 야생형 QscR과 비슷한 수준으로 활성이 억제되었다. 이러한 결과들은 130번째 arginine의 경우 QscR의 활성과 acyl-HSL들과의 결합에 중요한 역할을 하는 반면, 72번째와 140번째 threonine들의 경우 QscR의 활성에는 중요하지만, 다른 구조의 acyl-HSL들에 대한 선택적 결합이나, 경쟁적 억제자들의 결합 간섭에는 영향을 주지 않음을 시사하는 것이다.

Keywords

References

  1. Chai, Y. and Winans, S.C. 2004. Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol. Microbiol. 51, 765-776.
  2. Chugani, S.A., Whiteley, M., Lee, K.M., D'Argenio, D., Manoil, C., and Greenberg, E.P. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 2752-2757. https://doi.org/10.1073/pnas.051624298
  3. Coggan, K.A. and Wolfgang, M.C. 2012. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol. 14, 47-70.
  4. Farinha, M.A. and Kropinski, A.M. 1990. Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J. Bacteriol. 172, 3496-3499. https://doi.org/10.1128/jb.172.6.3496-3499.1990
  5. Fuqua, C., Parsek, M.R., and Greenberg, E.P. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439-468. https://doi.org/10.1146/annurev.genet.35.102401.090913
  6. Ha, C., Park, S.J., Im, S.J., and Lee, J.H. 2012. Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol. Cells 33, 53-59. https://doi.org/10.1007/s10059-012-2208-2
  7. Henke, J.M. and Bassler, B.L. 2004. Bacterial social engagements. Trends Cell. Biol. 14, 648-656. https://doi.org/10.1016/j.tcb.2004.09.012
  8. Hurley, M.N., Camara, M., and Smyth, A.R. 2012. Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur. Respir. J. doi: 10.1183/09031936.00042012
  9. Jimenez, P.N., Koch, G., Thompson, J.A., Xavier, K.B., Cool, R.H., and Quax, W.J. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46-65. https://doi.org/10.1128/MMBR.05007-11
  10. Kim, C., Kim, J., Park, H.Y., Park, H.J., Lee, J.H., Kim, C.K., and Yoon, J. 2008. Furanone derivatives as quorum-sensing antagonists of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 80, 37-47. https://doi.org/10.1007/s00253-008-1474-6
  11. Kim, S.-K., Kim, C., Yoon, J., and Lee, J.-H. 2011. Inhibition of quorum sensing and biofilm formation by synthetic quorum signal analogues in Pseudomonas aeruginosa. Korean J. Microbiol. Biotechnol. 39, 29-36.
  12. Lee, J.H., Lequette, Y., and Greenberg, E.P. 2006. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59, 602-609. https://doi.org/10.1111/j.1365-2958.2005.04960.x
  13. Lequette, Y., Lee, J.H., Ledgham, F., Lazdunski, A., and Greenberg, E.P. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188, 3365-3370. https://doi.org/10.1128/JB.188.9.3365-3370.2006
  14. Lintz, M.J., Oinuma, K., Wysoczynski, C.L., Greenberg, E.P., and Churchill, M.E. 2011. Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. USA 108, 15763-15768. https://doi.org/10.1073/pnas.1112398108
  15. Newman, J.R. and Fuqua, C. 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197-203. https://doi.org/10.1016/S0378-1119(98)00601-5
  16. Oinuma, K. and Greenberg, E.P. 2011. Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR. J. Bacteriol. 193, 421-428. https://doi.org/10.1128/JB.01041-10
  17. Page, M.G. and Heim, J. 2009. Prospects for the next anti-Pseudomonas drug. Curr. Opin. Pharmacol. 9, 558-565. https://doi.org/10.1016/j.coph.2009.08.006
  18. Reading, N.C. and Sperandio, V. 2006. Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett. 254, 1-11. https://doi.org/10.1111/j.1574-6968.2005.00001.x
  19. Schuster, M. and Greenberg, E.P. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73-81. https://doi.org/10.1016/j.ijmm.2006.01.036
  20. Welch, M., Mikkelsen, H., Swatton, J.E., Smith, D., Thomas, G.L., Glansdorp, F.G., and Spring, D.R. 2005. Cell-cell communication in Gram-negative bacteria. Mol. Biosyst. 1, 196-202. https://doi.org/10.1039/b505796p