DOI QR코드

DOI QR Code

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond

미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석

  • Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Sang-Yoon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 강시온 (한국생명공학연구원 환경바이오연구센터) ;
  • 김병혁 (한국생명공학연구원 환경바이오연구센터) ;
  • 신상윤 (한국생명공학연구원 환경바이오연구센터) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터) ;
  • 김희식 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2012.08.29
  • Accepted : 2012.09.20
  • Published : 2012.09.30

Abstract

Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

미세조류는 광합성을 통하여 바이오디젤과 같은 부가가치상품을 생산할 수 있으며, 미세조류를 이용한 생명공학 기술이 주목 받고 있다. 그러나 질소원과 탄소원은 미세조류 배양 비용을 높여 충분한 바이오매스 생산에 제한요소가 되고 있다. 미세조류를 배양하는데 도시하수를 이용하는 것은 생산단가를 낮추는 좋은 대안이 될 수 있으며, 본 연구에서는 옥외 수질정화 배양 시스템(mini raceway open pond)을 이용하여 적용했다. 실험에 사용한 도시하수는 하수종말처리장의 1차 침전지를 거친 유입수를 이용하였으며, 토착 미세조류를 mini raceway open pond에서 배양하였다. 체류시간 6일의 운전 후 TN, TP, COD-$_{Mn}$, $NH_3$-N의 평균 제거 효율은 80.18%, 63.56%, 76.34%, 96.74%로 각각 나타났다. 18S rRNA gene 분석결과 녹조류인 Chlorella, Scenedesmus가 우점하였으며, 16S rRNA gene 분석결과 Rhodobacter, Luteimonas, Agrobacterium, Thauera, Porphyrobacte의 5종의 bacteria가 동정되었다. 이러한 결과를 통하여 미세조류를 이용한 호기성 처리나 과도한 발전비용 없이 효과적인 하수처리를 할 수 있는 가능성을 확인하였다. 그리고 도시하수는 미세조류 배양에 필요한 탄소원과 질소원을 제공할 수 있으며 미세조류 바이오매스는 상업적 목적으로 이용될 수 있는 가능성을 확인할 수 있었다.

Keywords

References

  1. Aaronson, S. and Dubinsky, Z. 1982. Mass production of microalgae. Cell. Mol. Life Sci. 38, 36-40. https://doi.org/10.1007/BF01944523
  2. APHA. 1998. Standard methods for the examination of water and wastewater, 20th ed. APHA, Washington, D.C. USA.
  3. Cain, J.R., Paschal, D.C., and Hayden, C.M. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9, 9-16. https://doi.org/10.1007/BF01055495
  4. Carberry, J.B. and Greene, R.W. 1992. Model of algal bacterial clay wastewater treatment system. Water Sci. Technol. 26, 1697-1706.
  5. Chen, Y., Lin, C.J., Jones, G., Fu, S., and Zhan, H. 2009. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. J. Hazard. Mater. 171, 948-953. https://doi.org/10.1016/j.jhazmat.2009.06.100
  6. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  7. Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L.L. 2000. Identification of polyphosphateaccumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 88, 1175-1182.
  8. Finkmann, W., Altendorf, K., Stackebrandt, E., and Lipski, A. 2000. Characterization of $N_{2}O$-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. mov., sp. nov. and Pseudoxanthomonas broegernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273-282. https://doi.org/10.1099/00207713-50-1-273
  9. Gander, M., Jefferson, B., and Judd, S. 2000. Aerobic MBRs for domestic wastewater treatment: a review with cost consideration. Sep. Purif. Technol. 18, 119-130. https://doi.org/10.1016/S1383-5866(99)00056-8
  10. Gonzalez, L.E., Cañizares, R.O., and Baena, S. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60, 259-262. https://doi.org/10.1016/S0960-8524(97)00029-1
  11. Guerrero, M.G., Vega, J.M., and Losada, M. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32, 169-204. https://doi.org/10.1146/annurev.pp.32.060181.001125
  12. Guschina, I.A. and Harwood, J.L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45, 160-186. https://doi.org/10.1016/j.plipres.2006.01.001
  13. Heo, H.W., Sin, G.S., Park, S.G., Park, J.B., JuChoe, E., and Kang, H. 2003. Evaluation of affecting factors for efective anaerobic phosphorus release. J. KSEE. 25, 155-162.
  14. Hesselmann, R.P.X., Werlen, C., Hahn, D., Meer, J.R.v.d., and Zehnder, A.J.B. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22, 454-465. https://doi.org/10.1016/S0723-2020(99)80055-1
  15. Huang, J.S., Wu, C.S., Jih, C.G., and Chen, C.T. 2001. Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Water Res. 35, 3867-3875. https://doi.org/10.1016/S0043-1354(01)00116-6
  16. Ishii, K. and Fukui, M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67, 3753-3755. https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  17. Jaspers, E., Nauhaus, K., Cypionka, H., and Overmann, J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36, 153-164. https://doi.org/10.1111/j.1574-6941.2001.tb00835.x
  18. Jeong, M.L., Gillis, J.M., and Hwang, J.-Y. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24, 1763-1766. https://doi.org/10.5012/bkcs.2003.24.12.1763
  19. Juretschko, S., Loy, A., Lehner, A., and Wagner, M. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99. https://doi.org/10.1078/0723-2020-00093
  20. Kim, K.J. and Yoon, S.H. 2001. Wastewater treatment using membrane bioreactors (MBR). J. Ind. Eng. Chem. 12, 239-248.
  21. Lau, P.S., Tam, N.F.Y., and Wong, Y.S. 1995. Effect of algal density on nutrient removal from primary settled wastewater. Environ. Pollut. 89, 59-66. https://doi.org/10.1016/0269-7491(94)00044-E
  22. Mandal, S. and Mallick, N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291. https://doi.org/10.1007/s00253-009-1935-6
  23. Martinez, M.E., Sánchez, S., Jimenez, J.M., Yousfi, F.E., and Munoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73, 263 -272. https://doi.org/10.1016/S0960-8524(99)00121-2
  24. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., Wilde, W.D., Koning, J.D., Graaf, J., and Wintgens, T. 2006. Membrane bioreactor technology on wastewater treatment and reuse. Desalination 187, 271-282. https://doi.org/10.1016/j.desal.2005.04.086
  25. Melis, A. and Happe, T. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748. https://doi.org/10.1104/pp.010498
  26. Minowa, T., Yokoyama, S., Kishimoto, M., and Okakura, T. 1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 74, 1735-1738. https://doi.org/10.1016/0016-2361(95)80001-X
  27. Morris, I. and Syrett, P.J. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Microbiol. 47, 32-41.
  28. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317-322. https://doi.org/10.1016/S1369-5274(99)80055-1
  29. Muyzer, G., Waal, E.C.d., and Uitierlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
  30. Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H., and Inouye, I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44, 47-55. https://doi.org/10.1111/j.1440-1835.1996.tb00037.x
  31. Park, J.B., Park, S.K., Hur, H.W., and Kang, H. 2009. Estimation of kinetic coefficient in submerged membrane bioreactor for biological nutrient removal. J. KSEE 31, 109-113.
  32. Park, J.B., Shin, K.S., Hur, H.W., and Kang, H. 2011. Development of influent controlled membrane bioreactor for biological nutrient removal on municipal wastewater. J. KSEE 33, 485-491. https://doi.org/10.4491/KSEE.2011.33.7.485
  33. Philipp, B. and Schink, B. 2000. Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. Arch. Microbiol. 173, 91-96. https://doi.org/10.1007/s002039900112
  34. Pittman, J.K., Dean, A.P., and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102, 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  35. Rectenwald, L.L. 2000. Nutrient removal from wastewater effluent using ecological water treatment system. Environ. Sci. Technol. 34, 522-526. https://doi.org/10.1021/es9908422
  36. Scragg, A.H., Morrison, J., and Shales, S.W. 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol. 33, 884-889. https://doi.org/10.1016/j.enzmictec.2003.01.001
  37. Shi, L., Cai, Y., Li, P., Yang, H., Liu, Z., Kong, L., Yu, Y., and Kong, F. 2009. Molecular identification of the colony-associated cultivable bacteria of the Cyanobacterium Microcystis aeruginosa and their effects on algal growth. J. Freshw. Ecol. 24, 211-218. https://doi.org/10.1080/02705060.2009.9664285
  38. Smith, F.W. and Thompson, J.F. 1971. Regulation of nitrate reductase in Chlorella vulgaris. Plant Physiol. 48, 224-227. https://doi.org/10.1104/pp.48.2.224
  39. Soeder, C.J. 1980. Mass production of microalgae: Results and Prospects. Hydrobiologia. 72, 197-209. https://doi.org/10.1007/BF00016247
  40. Syrett, P.J. and Morris, I. 1963. The inhibition of nitrateassimilation by ammonium in Chlorella. Biochimica et Biophysica Acta. 67, 566-575. https://doi.org/10.1016/0926-6569(63)90277-3
  41. Wilkiea, A.C. and Mulbry, W.W. 2002. Recovery of dairy manure nutrients by benthic fresh water algae. Bioresour. Technol. 84, 81-91. https://doi.org/10.1016/S0960-8524(02)00003-2
  42. Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I., and Yang, J.W. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotechnol. 69, 451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M
  43. Yun, Y.S., Park, J.M., and Yang, J.W. 1996. Enhancement of $CO_{2}$ tolerance of Chlorella vulgaris by gradual increase of $CO_{2}$ concentration. Biotechnol. Tech. 10, 713-716.

Cited by

  1. The Effect of Microalgal Growth on Nutrient Sources Using Microalgal Small Scale Raceway Pond (SSRP) for Biodiesel Production vol.50, pp.4, 2014, https://doi.org/10.7845/kjm.2014.4076
  2. Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae vol.27, pp.1, 2013, https://doi.org/10.11001/jksww.2013.27.1.69
  3. Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source vol.27, pp.2, 2016, https://doi.org/10.3807/KJOP.2016.27.2.073
  4. Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP) vol.32, pp.1, 2014, https://doi.org/10.11626/KJEB.2014.32.1.026
  5. Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process vol.30, pp.4, 2014, https://doi.org/10.15681/KSWE.2014.30.4.386
  6. 미세조류를 이용한 오·폐수 영양염류 제거효율 평가 vol.50, pp.2, 2012, https://doi.org/10.11614/ksl.2017.50.2.187
  7. MLSS와 미세조류가 광합성 산소기반 질산화에 미치는 영향 vol.19, pp.4, 2012, https://doi.org/10.17663/jwr.2017.19.4.508
  8. Ankistrodesmus bibraianus의 최적 배양조건 설정을 통한 수질오염물질 제거 및 축산 폐수 처리 적용 vol.38, pp.1, 2020, https://doi.org/10.11626/kjeb.2020.38.1.082