References
- Barber, M. 1961. Methicillin-resistant staphylococci. J. Clin. Pathol. 14, 385-393. https://doi.org/10.1136/jcp.14.4.385
- Fontanay, S., Grare, M., Mayer, J., Finance, C., and Duval, R.E. 2008. Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J. Ethnopharmacol. 120, 272-276. https://doi.org/10.1016/j.jep.2008.09.001
- Horiuchi, K., Shiota, S., Hatano, T., Yoshida, T., Kuroda, T., and Tsuchiya, T. 2007. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm. Bull. 30, 1147-1149. https://doi.org/10.1248/bpb.30.1147
- Jovel, E.M., Zhou, X.L., Ming, D.S., Wahbe, T.R., and Towers, G.H. 2007. Bioactivity-guided isolation of the active compounds from Rosa nutkana and quantitative analysis of ascorbic acid by HPLC. Can. J. Physiol. Pharmacol. 85, 865-871. https://doi.org/10.1139/Y07-053
- Kim, M.J., Kim, C.S., Ha, W.H., Kim, B.H., Lim, Y.K., Park, S.N., Cho, Y.J., Kim, M., Ko, J.H., Kwon, S.S., and et al. 2010. Antimicrobial effects of oleanolic acid against Streptococcus mutans and Streptococcus sobrinus isolated from a Korean population. Int. J. Oral Biol. 35, 191-195.
- Kim, M.J., Kim, C.S., Park, J.Y., Lim, Y.K., Park, S.N., Ahn, S.J., Jin, D.C., Kim, T.H., and Kook, J.K. 2011. Antimicrobial effects of ursolic acid against mutans streptococci isolated from Koreans. Int. J. Oral Biol. 36, 7-11.
- Kock, R., Becker, K., Cookson, B., van Gemert-Pijnen, J.E., Harbarth, S., Kluytmans, J., Mielke, M., Peters, G., Skov, R.L., Struelens, M.J., and et al. 2010. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro. Surveill. 15, 19688.
- Kreisel, K.M., Johnson, J.K., Stine, O.C., Shardell, M.D., Perencevich, E.N., Lesse, A.J., Gordin, F.M., Climo, M.W., and Roghmann, M.C. 2010. Illicit drug use and risk for USA300 methicillin-resistant Staphylococcus aureus infections with bacteremia. Emerg. Infect. Dis. 16, 1419-1427. https://doi.org/10.3201/eid1609.091802
- Liu, J. 1995. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49, 57-68. https://doi.org/10.1016/0378-8741(95)90032-2
- Morell, E.A. and Balkin, D.M. 2010. Methicillin-resistant Staphylococcus aureus : a pervasive pathogen highlights the need for new antimicrobial development. Yale J. Biol. Med. 83, 223-233.
- Murakami, K., Minamide, W., Wada, K., Nakamura, E., Teraoka, H., and Watanabe, S. 1991. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 29, 240-244.
- National Committee for Clinical Laboratory Standards. 2000. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard M7-A5. NCCLS, Wayne, Pennsylvania, USA.
- Szczuka, E., Szumała-Kakol, A., Siuda, A., and Kaznowski, A. 2010. Clonal analysis of Staphylococcus aureus strains isolated in obstetric-gynaecological hospital. Pol. J. Microbiol. 59, 161-165.
- Ubukata, K., Nonoguchi, R., Matsuhashi, M., and Konno, M. 1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. J. Bacteriol. 171, 2882-2885. https://doi.org/10.1128/jb.171.5.2882-2885.1989
- Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., and Schempp, C.M. 2007. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine 14, 508-516. https://doi.org/10.1016/j.phymed.2006.12.013
- Winstanley, T.G., Eggington, R., and Spencer, R.C. 1993. Selective medium for MRSA. J. Clin. Pathol. 46, 1140.
- Zheng, C.J., Sohn, M.J., Kim, K.Y., Yu, H.E., and Kim, W.G. 2008. Olean-27-carboxylic acid-type triterpenes with potent antibacterial activity from Aceriphyllum rossii. J. Agric. Food Chem. 56, 11752-11756. https://doi.org/10.1021/jf802832w
Cited by
- Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems vol.1838, pp.10, 2014, https://doi.org/10.1016/j.bbamem.2014.05.027
- Ursolic Acid—A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities vol.20, pp.12, 2015, https://doi.org/10.3390/molecules201119721
- Antibiotic adjuvants from Buxus sempervirens to promote effective treatment of drug-resistant Staphylococcus aureus biofilms vol.6, pp.97, 2016, https://doi.org/10.1039/C6RA21137B
- Inhibitory effect of SeO2 on cell growth of methicillin-resistant Staphylococcus aureus vol.51, pp.4, 2015, https://doi.org/10.7845/kjm.2015.5062
- Anti-proliferative and antibacterialin vitroevaluation of the polyurethane nanostructures incorporating pentacyclic triterpenes vol.54, pp.11, 2016, https://doi.org/10.1080/13880209.2016.1180538
- Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane—Langmuir monolayer approach vol.1848, pp.2, 2015, https://doi.org/10.1016/j.bbamem.2014.10.024
- Incorporation of Pentacyclic Triterpenes into Mitochondrial Membrane—Studies on the Interactions in Model 2D Lipid Systems vol.118, pp.45, 2014, https://doi.org/10.1021/jp508743j
- Antagonistic effects of α-tocopherol and ursolic acid on model bacterial membranes vol.1848, pp.10, 2015, https://doi.org/10.1016/j.bbamem.2015.05.009
- Natural and hemi-synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: a review pp.1572-980X, 2018, https://doi.org/10.1007/s11101-018-9564-2
- In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains vol.48, pp.6, 2012, https://doi.org/10.4103/0253-7613.194851
- Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR) vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3663315
- Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci vol.13, pp.11, 2012, https://doi.org/10.3390/pharmaceutics13111976
- Antimicrobial Effect of Phytochemicals from Edible Plants vol.9, pp.11, 2021, https://doi.org/10.3390/pr9112089