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on animal models have suggested that alcohol has a direct toxic 
effect on peripheral nerve and the spinal cord system5,23). Espe-
cially acetaldehyde, one of the most important metabolites of 
ethanol, has a direct neurotoxic effect16). Epigenetic and inflam-
matory control is critical role in the experimental animal models 
of alcohol induced neuropathy. In the recent year, similar results 
have been obtained that protein kinase species play a critical role 
in the development and maintenance of alcohol-induced pain6). 
Extensive animal study suggested that chronic administration of 
minocycline could ameliorate the development of neuropathic 
pain by inhibiting the release of proinflammatory cytokines 
and oxidative stress in mononeuropathic rats7). A significant in-

INTRODUCTION

Polyneuropathy is a frequent complication of chronic con-
sumption of ethanol, characterized by allodynia and pain, pri-
marily in the lower extremities, and is poorly managed by avail-
able treatments22). It is often asymptomatic, and incidence of 
peripheral neuropathy ranges from 10% to 50%21). The mecha-
nism of alcohol-induced neuropathy is an axonal neuropathy 
characterized by Wallerian degeneration of the axons and a re-
duction in the myelination of nerve fibers34). 

The pathogenesis of this axonal degeneration and reduction 
in the myelination, however, is not well understood. Researches 
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cording the somatosensory evoked potential (SEP). All SEP re-
sponses were obtained from stimulation of anesthetized, unre-
strained rats. Rats were placed in a prone position on a plastic 
board with the active electrode implanted 2.5 mm posterior to 
the bregma and the reference electrode implanted in the mid 
frontal bone (Fig. 1). The SEP responses were elicited by activat-
ing the sensory nerve in the tale. For the sensory nerve stimula-
tion, the cathode was placed 4 cm distal to the tale origin site and 
the anode was positioned two fingers distal to the cathode with 
ring electrode. The ground electrode was placed subcutaneously 
between the stimulation and recording electrodes. The tail was 
stimulated by positive 1.3-1.9 mA current pulses for 0.2 msec at 3 
Hz. The signal-to-noise ratio was improved by ensemble averag-
ing of 500 stimulus locked sweeps. The first peak latency was re-
corded. All animals were evaluated once a week for 8 weeks. 

Quantification for mechanical allodynia
The behavioral tests measured were foot withdrawal thresh-

olds (as an indicator for mechanical allodynia) in response to 
mechanical stimuli applied to the left and right hind paws22).  
The examiner who conducted the tests did not know about the 
nature of the experimental treatment. For each test, the animals 
were placed in a plastic chamber (9×9×30 cm) and habituated 
for at least 10 min. The chamber was placed on a mesh screen, 
so that mechanical stimuli could be administered to the plantar 
surface of the left and right hind paws. Thresholds were deter-
mined by the up-down method7) by using a set of von Frey 
monofilaments (von Frey filament values : 3.65, 3.87, 4.10, 4.31, 
4.52, 4.74, 4.92, and 5.16; equivalent to : 0.45, 0.74, 1.26, 2.04, 
3.31, 5.50, 8.32, and 14.45 g values). A von Frey filament was ap-
plied perpendicularly to the most sensitive areas of the plantar 
surface at the base of the third or fourth toes with sufficient force 
to bend the filament slightly for 3-4 sec. An abrupt withdrawal of 
the foot during stimulation or immediately after stimulus remov-
al was considered as a positive response. The first stimulus was 

crease in lipid peroxidation and a significant decrease in the ac-
tivity of antioxidant enzymes (superoxide dismutase and cata-
lase) were observed in the sciatic nerves of diabetic rats with 
established neuropathic pain28). Dina et al.6) demonstrated that 
allodynia is present in an established rat model of chronic alco-
holism and that an inflammatory process and protein kinase 
signaling play a pivotal role in the enhanced allodynia produced 
by chronic alcohol. An important action of cAMP is activation 
of transcription factors, including cAMP-responsive element 
binding (CREB) protein and nuclear factor-kB (NF-κB) p5012). 
Phosphorylation of CREB stimulates transcription of cell surviv-
al genes19). Phosphorylation of NF-κB p50 subunit suppresses 
transcription of inflammation-associated genes, especially pro-
inflammatory cytokines tumor necrosis factor-α (TNF-α) and 
interleukin-1β (IL-Iβ)4,12,31). Thus, we hypothesized that use of 
rolipram, a selective inhibitor of cAMP specific phosphodiester-
ase (PDE), may improve mechanical allodynia and nerve con-
duction in a rat model of ethanol-induced neuropathic pain. 

MATERIALS AND METHODS

Experimental animals
Male adult Sprague-Dawley rats weighing 200-300 g were 

used in this study. The animals were housed in groups of two in 
plastic cages with soft bedding and free access to food and water. 
All animals were acclimated to their cages for 1 week before any 
experiments were performed. All experimental protocols were 
approved by the Institutional Animal Care and Use Committee 
and were carried out in accordance with the National Institutes 
of Health’s Guide for the Care and Use of Laboratory Animals.

Ethanol-induced neuropathic pain model and drug 
treatment protocol

Alcoholic neuropathy was induced by administering 10 g/kg 
b.i.d oral gavage of 35% v/v ethanol in double distilled water for 8 
weeks in all animals. Rolipram (Sigma, 
St. Louis, MO, USA), 3 mg/kg was first 
dissolved in 75 µL and then gently 
mixed with 75 µL Tween 80 and 1850 
µL physiological saline to a final 2,000 
µL solution. Physiological saline served 
as the vehicle for the control group. Ac-
cording to the randomly assigned group, 
animals were administered rolipram or 
vehicle once daily for a period of eight 
weeks. 250 µL rolipram or vehicle was 
administered intraperitoneally. Intraper-
itoneal delivery involved an injection 
below the skin on the low abdominal re-
gion of the animal at the right flank.

Electrophysiologic responses
A Nicolet Viking IV was used for re-

Fig. 1. A : A schematic illustration of the rat skull with electrode placement for SEP study. B : SEP 
signal at different experimental stages in the ethanol induced neuropathy control group. SEP : so-
matosensory evoked potential.
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week 3, latency significantly started to increase in control groups 
(rolipram 16.76±1.27, ethanol 21.10±1.75, vehicle 21.19±1.85) 
(p<0.05) (Fig. 3). In rolipram-treated rats, the shorter latency 
was sustained until week 8, the final week of the study (rolip-
ram 17.50±1.77, ethanol 26.30±2.55, vehicle 25.80±3.17) 
(p<0.05) (Fig. 3). 

Mechanical threshold  
The baseline mechanical thresholds of all rats before ethanol 

application was 17.9 g which was the maximal cutoff point. Etha-
nol decreased the mechanical threshold of both hind paws. Fur-
ther, the mechanical threshold of both hind paws did not signifi-
cantly differ from each other. Thus, we used the left hind paw as 
the site to measure mechanical threshold. When ethanol (10 g/
kg) was administrated on day 0 to week 8, there was a significant-
ly greater decrease in nociceptive threshold, beginning from 
week 3 (rolipram 18.56±1.943, ethanol 4.370±1.631, vehicle 
4.375±1.663) (p<0.05) (Fig. 2). The statistical difference was sus-
tained until week 8, the final week of the study (rolipram 16.60± 
1.53, ethanol 1.23±0.45, vehicle 1.38±0.55) (p<0.05) (Fig. 2). 

DISCUSSION

The neurologic effects of ethanol consumption are complex, af-
fecting on both the central and peripheral nervous system26,32,35). 
In the peripheral nervous system, it produces a small-fiber dying 
back painful neuropathy2,6). Over time, pain far outweighs anal-
gesia, producing a neuropathic syndrome with symptoms that 
have been described as “like tearing flesh off the bones”3). In re-
cent years, ethanol consumption in Western industrialized coun-

always the 4.31 filament. When there was a positive response, a 
filament with the next lower von Frey value was used. When no 
response was observed, a filament with the next higher von Frey 
value was applied. This testing pattern continued until responses 
to the sixth von Frey stimuli from the first change of response 
(either higher or lower than the first stimulus depending on 
whether the first response was negative or positive) were mea-
sured. The responses were then converted into a 50% threshold 
value using the formula : 50% threshold 10 (X kd)/104, where X 
is the value of the final von Frey hair used in log units, k is the 
tabular value for the pattern of positive or negative responses, 
and d is the mean differences between stimuli in log units (0.22). 
When positive or negative responses were still observed with the 
3.65 or 5.16 filament, values of 0.3 or 18.6 g were assigned, re-
spectively, by assuming a value of 0.5 for k.

Statistical analysis 
Results are presented as means±SEMs and analyzed using the 

SigmaStat program. Statistical analyses were done using two-
way repeated-measures analysis of variances with two-repeated 
factors followed by Tukey post hoc test for the experiment of 
Latin square design or two-way repeated-measures analysis of 
variances with one repeated time factor followed by Tukey post 
hoc tests. In all cases, p<0.05 was considered significant.

RESULTS

SEP responses 
SEP study, a measure of sensory nerve excitability, was exten-

sively used in the diagnosis of neuropathies. Beginning from 

Fig. 3. The time courses of SEP latency in ethanol-induced neuropathy. 
Rolipram was intraperitoneally injected once a day. The vehicle group re-
ceived equal volume of normal saline. Note that ethanol significantly in-
creased the latency of SEP from the first 3 weeks. Rolipram significantly 
improved increased latencies compared with ethanol diet and ethanol 
diet with vehicle injection groups (p<0.05). In this figure data are plotted 
as mean±standard error of the mean. Asterisks indicate values signifi-
cantly different from those of ethanol diet alone and of vehicle group by 
using a two-way repeated measures analysis of variance with repeated 
time factor, followed by Tukey post hoc test. EP : somatosensory evoked 
potential.

Fig. 2. The time courses of mechanical threshold in ethanol-induced 
neuropathy. Rolipram was intraperitoneally injected once a day. The ve-
hicle group received equal volume of normal saline. Note that ethanol 
significantly decreased mechanical threshold for the first 3 weeks. 
Rolipram significantly ameliorated mechanical threshold decrease com-
pared with ethanol diet and ethanol diet with vehicle injection groups 
(p<0.05). In this figure data are plotted as mean±standard error of the 
mean. Asterisks indicate values significantly different from those of eth-
anol diet alone and of vehicle group by using a two-way repeated mea-
sures analysis of variance with repeated time factor, followed by Tukey 
post hoc test.
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of study findings is warranted because of some limitation, such 
as study design without measurement of long-term effects and 
optimal dose of rolipram. Further study is needed to identify 
pathophysiology using cytokine analysis, ROS measurement 
and nerve biopsy. 

CONCLUSION

This study shows that rolipram, a PDE4 inhibitor known to 
control epigenetic regulation and reduce both proinflammatory 
cytokine levels and molecules involved in free radical produc-
tion and oxidative stress, ameliorated mechanical behavior as 
measured by mechanical allodynia and SEP in ethanol-induced 
neuropathy in rats. 
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