DOI QR코드

DOI QR Code

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation

  • Kim, Se-Chul (Gruaduate School of Analytical Science and Technology, Chungnam National University) ;
  • Zhang, Ting (Department of Chemistry, Chungnam National University) ;
  • Park, Jin-Nam (Department of New & Renewable Energy, Kyungil University) ;
  • Rhee, Choong-Kyun (Gruaduate School of Analytical Science and Technology, Chungnam National University) ;
  • Ryu, Ho-Jin (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2012.06.09
  • Accepted : 2012.07.13
  • Published : 2012.10.20

Abstract

Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).

Keywords

References

  1. Ross P. N. In Oxygen Reduction Reaction on Smooth Single Crystal Electrodes; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.; John Wiley and Sons: 2003; Vol. 2, pp 465-480.
  2. EG&G Technical Services Fuel Cell Handbook, 7th edn.; U.S. Department of Energy: 2004.
  3. Ralph, T. R.; Hogarth, M. P. Platinum Metals Rev. 2002, 46, 117.
  4. Kinoshita, K. Electrochemical Oxygen Technology; John Wiley and Sons: 1992.
  5. Maillard, F.; Pronkin, S.; Savinova, E. R. In Influence of Size on the Electrocatalytic Activities of Supported Metal Nanoparticles in Fuel Cell-Related Reactions; Vielstich, W., Yokokawa, H., Gasteiger, H. A., Eds.; John Wiley and Sons: 2009; Vol. 5, pp 91- 111.
  6. Markovic, N. M.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N. Fuel Cells 2001, 1, 105. https://doi.org/10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9
  7. Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7140. https://doi.org/10.1021/la900204c
  8. Jung, C.; Zhang, T.; Kim, B.-J.; Kim, J.; Rhee, C. K.; Lim, T.-H. Bull. Korean Chem. Soc. 2010, 31, 1543. https://doi.org/10.5012/bkcs.2010.31.6.1543
  9. Jung, C.; Kim, J.; Rhee, C. K. Electrochem. Comm. 2010, 12, 1363. https://doi.org/10.1016/j.elecom.2010.07.021
  10. Shukla, A. K.; Neegat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. J. Electroanal. Chem. 2001, 504, 111. https://doi.org/10.1016/S0022-0728(01)00421-1
  11. Gasteiger, H. A.; Markovic, N.; Ross, P. N. J. Phys. Chem. 1995, 99, 16757. https://doi.org/10.1021/j100045a042
  12. Arico, A. S.; Antonucci, P. L.; Modica, E.; Baglio, V.; Kim, H.; Antonucci, V. Electrochimica Acta 2002, 47, 3723. https://doi.org/10.1016/S0013-4686(02)00342-0
  13. Holstein, W. L.; Rosenfeld, H. D. J. Phys. Chem. B 2005, 109, 2176. https://doi.org/10.1021/jp048955h
  14. Cramm, S.; Friedrich, K. A.; Geyzers, K.-P.; Stimming, U.; Vogel, R. Fresen. J. Anal. Chem. 1997, 358, 189. https://doi.org/10.1007/s002160050380
  15. Maillard, F.; Gloaguen, F.; Leger, J.-M. J. Appl. Electrochem. 2003, 33, 1. https://doi.org/10.1023/A:1022906615060
  16. Vigier, F.; Gloaguen, F.; Leger, J. M.; Lamy, C. Electrochimica Acta 2001, 46, 4331. https://doi.org/10.1016/S0013-4686(01)00680-6
  17. Hoster, H.; Iwasita, T.; Baumgartner, H.; Vielstich, W. J. Electrochem. Soc. 2001, 148, A496. https://doi.org/10.1149/1.1365142
  18. Davies, J. C.; Hayden, B. E.; Pegg, D. J.; Rendall, M. E. Surf. Sci. 2002, 496, 110. https://doi.org/10.1016/S0039-6028(01)01562-X
  19. Chrzanowski, W.; Wieckowski, A. Langmuir 1997, 13, 5974. https://doi.org/10.1021/la970193c
  20. Chrzanowski, W.; Wieckowski, A. Catal. Lett. 1998, 50, 69. https://doi.org/10.1023/A:1019042329841
  21. Waszczuk, P.; Solla-Gullon, J.; Kim, H. S.; Tong, Y. Y.; Montiel, V.; Aldaz, A.; Wieckowski, A. J. Catal. 2001, 203, 1. https://doi.org/10.1006/jcat.2001.3389
  22. Iwasita, T. Electrochimca Acta 2002, 47, 3663. https://doi.org/10.1016/S0013-4686(02)00336-5
  23. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc. 2004, 126, 8028. https://doi.org/10.1021/ja0495819
  24. Jang, J. H.; Han, S.; Hyeon, T.; Oh, S. M. J. Power Source 2003, 123, 79. https://doi.org/10.1016/S0378-7753(03)00459-2
  25. Rodriguez, N. M.; Chambers, A.; Baker, R. T. K. Langmuir 1995, 11, 3862. https://doi.org/10.1021/la00010a042
  26. Yoon, S.-H.; Lim, S.; Hong, S.-H. Carbon 2005, 43, 1828. https://doi.org/10.1016/j.carbon.2005.02.031
  27. Kim, T. G.; Lim, Y.; Kwon, K. H.; Hong, S. H.; Qiao, W. M.; Rhee, C. K.; Yoon, S.-H.; Mochida, I. Langmuir 2006, 22, 9086. https://doi.org/10.1021/la061380q
  28. Vericat, C.; Wakisaka, M.; Haasch, R.; Bagus, P. S.; Wieckowski, A. J. Solid State Electrochem. 2004, 8, 794.
  29. Kim, H.; Park, J.-N.; Lee, W.-H. Catal. Today 2003, 87, 237. https://doi.org/10.1016/j.cattod.2003.10.016
  30. Folkesson, B. Acta Chemica Scandinavica 1973, 27, 287. https://doi.org/10.3891/acta.chem.scand.27-0287
  31. Briggs, D.; Seah, M. P. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; John Wiley and Sons: 1990; Vol. 1
  32. Mayrhofer, K. J. J.; Blizanac, B. B.; Arenz, M.; Stamenkovic, V. R.; Ross, P. N.; Markovic, N. M. J. Phys. Chem. B 2005, 109, 14433. https://doi.org/10.1021/jp051735z
  33. Iwasita, T. In Methanol and CO Electrooxidation; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.; John Wiley and Sons: 2003; Vol. 2, pp 603-624.

Cited by

  1. Structural evolution of irreversibly adsorbed Bi on Pt(111) under potential excursion vol.17, pp.12, 2013, https://doi.org/10.1007/s10008-013-2218-9
  2. Shape‐controlled Electrodeposition of Standing Pt Nanoplates on Gold Substrates as a Sensor Platform for Nitrite Ions vol.40, pp.6, 2012, https://doi.org/10.1002/bkcs.11723