DOI QR코드

DOI QR Code

Improved Photolysis of Water from Ti Incorporated Double Perovskite Sr2FeNbO6 Lattice

  • Borse, P.H. (Solar H2 PEC Laboratory, International Advanced Research Center for Powder Metallurgy and New Materials(ARC International)) ;
  • Cho, C.R. (Department of Nano Fusion Technology, Pusan National University) ;
  • Yu, S.M. (Division of High Technology Materials Research, Korea Basic Science Institute) ;
  • Yoon, J.H. (Division of High Technology Materials Research, Korea Basic Science Institute) ;
  • Hong, T.E. (Division of High Technology Materials Research, Korea Basic Science Institute) ;
  • Bae, J.S. (Division of High Technology Materials Research, Korea Basic Science Institute) ;
  • Jeong, E.D. (Division of High Technology Materials Research, Korea Basic Science Institute) ;
  • Kim, H.G. (Division of High Technology Materials Research, Korea Basic Science Institute)
  • Received : 2012.04.26
  • Accepted : 2012.07.26
  • Published : 2012.10.20

Abstract

The Ti incorporation at Fe-site in the double perovskite lattice of $Sr_2FeNbO_6$ (SFNO) system is studied. The Ti concentration optimization yielded an efficient photocatalyst. At an optimum composition of Ti as x = 0.07 in $Sr_2Fe_{1-x}Ti_xNbO_6$, the photocatalyst exhibited 2 times the quantum yield for photolysis of $H_2O$ in presence of $CH_3OH$, than its undoped counterpart under visible light (${\lambda}{\geq}420nm$). Heavily Ti-doped $Sr_2Fe_{1-x}Ti_xNbO_6$ lattice exhibited poor photochemical properties due to the existence of constituent impurity phases as observed in the structural characterization, as well as deteriorated optical absorption. The higher electron-density acquired by n-type doping seem to be responsible for the more efficient charge separation in $Sr_2Fe_{1-x}Ti_xNbO_6$ (0.05 < x < 0.4) and thus consequently displays higher photocatalytic activity. The Ti incorporated structure also found to yield stable photocatalyst.

Keywords

References

  1. Kim, H. G.; Borse, P. H.; Jang, J. S.; Jeong, E. D.; Jung, O.; Suh, Y. J.; Lee, J. S. Chem. Comm. 2009, 5889.
  2. Jang, J. S.; Borse, P. H.; Lee, J. S.; Jung, O.; Cho, C. R.; Jeong, E. D.; Ha, M. G.; Won, M. S.; Kim, H. G. Bull. Korean Chem. Soc. 2009, 30, 1738. https://doi.org/10.5012/bkcs.2009.30.8.1738
  3. Matsumoto, Y.; Omae, M.; Sugiyama, K.; Sato, E. J. Phys. Chem. 1987, 91, 577. https://doi.org/10.1021/j100287a018
  4. Kim, H. G.; Borse, P. H.; Jang, J. S.; Jeong, E. D.; Lee, J. S. Mater. Lett. 2008, 62, 1427. https://doi.org/10.1016/j.matlet.2007.08.089
  5. Ishizawa, N.; Marumo, F.; Kawamura, T.; Kimura, M. Acta Crystallogr. Sect. B 1975, 31, 1912. https://doi.org/10.1107/S0567740875006462
  6. Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  7. Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176. https://doi.org/10.1021/ja8007825
  8. De, G. C.; Roy, A. M.; Bhattacharya, S. S. Int. J. Hydrogen Energy 1996, 21, 19. https://doi.org/10.1016/0360-3199(95)00031-8
  9. Hwang, D. W.; Kim, J.; Park, T. J.; Lee, J. S. Catal. Lett. 2002, 80, 53. https://doi.org/10.1023/A:1015322625989
  10. Yamashita, H.; Takeuchi, M.; Kishiguchi, S. J. Photochem. Photobiol. A 2002, 148, 257. https://doi.org/10.1016/S1010-6030(02)00051-5
  11. Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
  12. Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086. https://doi.org/10.1021/ja9016478
  13. Formal, F. L.; Graetzel, M.; Sivula, K. Adv. Func. Mater. 2010, 20, 1099. https://doi.org/10.1002/adfm.200902060
  14. Yu, J.; Kudo, A. Adv. Func. Mat. 2006, 16, 2163. https://doi.org/10.1002/adfm.200500799
  15. Kim, H. G.; Hwang, D. W.; Lee, J. S. J. Am. Chem. Soc. 2004, 126, 8912. https://doi.org/10.1021/ja049676a
  16. Kim, H. G.; Borse, P. H.; Jang, J. S.; Ahn, C. W.; Jeong, E. D.; Lee, J. S. Adv. Mater. 2011, 23, 2088. https://doi.org/10.1002/adma.201004171
  17. Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S. Angew. Chem. Int. Ed. 2005, 44, 4585. https://doi.org/10.1002/anie.200500064
  18. Sivula, K.; Formal, F. L.; Gratzel, M. Chem. Mater. 2009, 21, 2862. https://doi.org/10.1021/cm900565a
  19. Jang, J. S.; Kim, H. G.; Ji, S. M.; Bae, S. W.; Jung, J. H.; Shon, B. H.; Lee, J. S. J. Solid State Chem. 2006, 179, 1064.
  20. Bae, S. W.; Borse, P. H.; Hong, S. J.; Jang, J. S.; Lee, J. S.; Jeong, E. D.; Hong, T. E.; Yoon, J. H.; Jin, J. S.; Kim, H. G. J. Korean Phys. Soc. 2007, 51, S22. https://doi.org/10.3938/jkps.51.22
  21. Schiavello, M.; Sclafani, A. In Photocatalysis: Fundamentals & Applications; Serpone, N., Pelizzetti, E., Eds.; Wiley Interscience: New York, 1989; p 170.

Cited by

  1. A Review on Visible Light Active Perovskite-Based Photocatalysts vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191219995
  2. Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications pp.1610-3661, 2019, https://doi.org/10.1007/s10311-018-0814-8
  3. Characteristics of SrCo1-xFexO3-δ Perovskite Powders with Improved O2/CO2 Production Performance for Oxyfuel Combustion vol.35, pp.6, 2012, https://doi.org/10.5012/bkcs.2014.35.6.1613
  4. Photoelectrocatalytic activity of perovskite YFeO3/carbon fiber composite electrode under visible light irradiation for organic wastewater treatment vol.128, pp.None, 2012, https://doi.org/10.1016/j.jtice.2021.08.029
  5. Theoretical study of Sr2Fe1–xNb1+xO6 system: Electronic and magnetic properties and crystal structure vol.162, pp.None, 2012, https://doi.org/10.1016/j.jpcs.2021.110499