콘크리트 포장도로에서 분리한 탄산칼슘형성미생물의 다양한 환경 스트레스반응

Environmental Stress Response of Calcite Forming Bacteria Isolated from Concrete Pavement

  • 투고 : 2012.05.17
  • 심사 : 2012.05.31
  • 발행 : 2012.08.31


Microbially induced calcite precipitation (MICP) has been explored for protection and consolidation of construction materials such as concrete. In this study, we isolated 54 calcite forming bacteria from concrete pavement and selected 5 isolates which showed high specific urease activity. Also response of the 5 strains against various environmental stresses was examined. BC 4 and BC 5 showed 35% and 26% viability at heat stress ($50^{\circ}C$), respectively. BC 1 and BC 4 maintained 60.4% and 70.4% viability upon osmotic stress (1 M NaCl), respectively. Among the 5 isolates BC 4 had the highest viability upon alkaline stress (pH 10).


연구 과제 주관 기관 : 국토해양부, 인화대학교, 건설교통기술평가원


  1. Korea Institute of Construction Technology. (2010) Construction Brief. pp. 2-3. In: K.T.Koh. Concrete Technology Development for Green Growth, Korea.
  2. Chunxiang, Q., W. Jianyun, W. Ruixing, and C. Liang (2009) Corrosion protection of cement-based building materials by surface deposition of $CaCO_3$ by Bacillus pasteurii. Mater. Sci. Eng. C. 29: 1273-1280.
  3. Bang, S. S. and V. Ramakrishnan (2001) Microbiologicallyenhanced Crack Remediation (MECR). pp. 3-13. In: Proceedings of the International Symposium on Industrial Application of Microbial Genomes. June 20-22, Daegu, Korea.
  4. Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete (2010). Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166.
  5. Cunningham, A. B., R. Gerlach, L. Spangler, and A. C. Mitchell (2009) Microbially enhanced geologic containment of sequestered supercritical $CO_2$. Energy Procedia 1: 3245-3252.
  6. Vilardell, J., A. Aguado, L. Agullo, and R. Gettu (1998) Estimation of the modulus of elasticity for dam concrete. Cem. Concr. Res. 28: 93-101.
  7. Topcu, I. B. and S. Sengel (2004) Propertiesof concretes produced with waste concrete aggregate. Cem. Concr. Res. 34: 1307-312.
  8. De Muynck, W., K. Cox, N. De Belie, and W. Verstraete (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22: 875-885.
  9. De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014.
  10. Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.
  11. De Muynck, W., N. De Belie, and W. Verstraete (2010) Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136.
  12. Lee, Y. G., S. C. Lee, and C. W. Park (2006) A recent concrete engineering, Goomibook, Seoul.
  13. Dupraz, S., B. Menez, P. Gouze, R. Leprovost, P. Benezeth, O. S. Pokrovsky, and F. Guyot (2009) Experimental approach of $CO_2$ biomineralization in deep saline aquifers. Chem. Geol. 265: 54-62.
  14. Stocks-Fisher, S., J. K. Galinat, and S. S. Bang (1999) Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571.
  15. Bachmeier K. L., A. E. Williams, J. R. Warmington, S. S. Bang (2002) Urease activity in microbiologically-induced calcite precipitation. J. Biotechnol. 93:171-181.
  16. Boer, J. L., S. Quiroz-Valenzuela, K. L. Anderson, and R. P. Hausinger (2010) Mutagenesis of klebsiella aerogenes ureg to probe nickel binding and interactions with other urease-related proteins. Biochemistry. 49: 5859-5869.
  17. Achal. V., A. Mukherjee, P. C. Basu, and M. Sudhakara Reddy (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.
  18. Natarajan, K. R. (1995) Kinetic study of the enzyme urease from Dolichos biflorus. J. Chem. Educ. 72: 556-557.
  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  20. Park, S. J., N. Y. Lee, W. J. Kim, and S. Y. Ghim (2010) Application of bacteria isolated from Dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-221.
  21. Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.
  22. Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol. Biol. 64: 548-572.
  23. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang (2001) Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
  24. Soltmann, U., J. Raff, and S. Selenska-pobell (2003) Biosorption of heavy metals by sol-gel immobilized Bacillus sphaericus cells, spores and s-layers. J. Sol-gel Sci. Technl. 26: 1209-1212.

피인용 문헌

  1. Sporulation of Lysinibacillus sphaericus WJ-8 Isolated from Concrete Pavement and Response to Environmental Stresses vol.29, pp.3, 2014,
  2. Isolation and Characterization of Calcite Forming Bacteria from Various Environments in Korea vol.29, pp.5, 2014,