TETRAVALENT SYMMETRIC GRAPHS OF ORDER $9p$

SONG-TAO GUO AND YAN-QUAN FENG

Abstract. A graph is symmetric if its automorphism group acts transitively on the set of arcs of the graph. In this paper, we classify tetravalent symmetric graphs of order $9p$ for each prime p.

1. Introduction

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_α the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_\alpha = 1$ for every $\alpha \in \Omega$ and regular if G is transitive and semiregular. Throughout this paper, we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X)$, $E(X)$ and $\text{Aut}(X)$ to denote its vertex set, edge set, and automorphism group, respectively. For $u, v \in V(X)$, denote by $\{u, v\}$ the edge incident to u and v in X.

A graph X is said to be vertex-transitive if $\text{Aut}(X)$ acts transitively on $V(X)$. An s-arc in a graph is an ordered $(s + 1)$-tuple (v_0, v_1, \ldots, v_s) of vertices of the graph X such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. In particular, a 1-arc is called an arc for short and a 0-arc is a vertex. For a subgroup $G \leq \text{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive and (G, s)-regular if G is transitive and regular on the set of s-arcs in X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not $(G, s+1)$-arc-transitive. In particular, a $(G, 1)$-arc-transitive graph is simply called G-symmetric. A graph X is simply called s-arc-transitive, s-regular and s-transitive if it is $(\text{Aut}(X), s)$-arc-transitive, $(\text{Aut}(X), s)$-regular and $(\text{Aut}(X), s)$-transitive, respectively.

Arc-transitive or s-transitive graphs have received considerable attention in the literature. For example, s-transitive graphs of order np was classified in [3, 4, 23] depending on $n=1, 2$ or 3, where p is a prime. Li [13] showed that there exists an s-transitive graph of odd order if and only if $s \leq 3$. For the case of valency 4, Gardiner and Praeger [8, 9] characterized tetravalent

Received May 7, 2010.
2010 Mathematics Subject Classification. 05C25, 20B25.
Key words and phrases. normal Cayley graph, symmetric graph, s-transitive graph.

©2012 The Korean Mathematical Society

1111
symmetric graphs, and Li et al. [14] classified vertex-primitive tetravalent \(s \)-transitive graphs. The classification of tetravalent \(s \)-transitive Cayley graphs on abelian groups was given by Xu and Xu [25]. We may deduce a classification of tetravalent 1-regular Cayley graphs on dihedral groups from [12, 18, 21, 22]. Zhou [31] gave a classification of tetravalent 1-regular graphs of order \(2pq \) for \(p, q \) primes. Recently, Zhou [29] classified tetravalent \(s \)-transitive graphs of order \(4p \), and Zhou and Feng [30] classified tetravalent \(s \)-transitive graphs of order \(2p^2 \). In this paper we classify tetravalent \(s \)-transitive graphs of order \(9p \).

Throughout the paper we denote by \(C_n \) and \(K_n \) the cycle and the complete graph of order \(n \), respectively. Denote by \(Z_n \) the cyclic group of order \(n \), by \(Z_n^\ast \) the multiplicative group of \(Z_n \) consisting of numbers coprime to \(n \), by \(D_{2n} \) the dihedral group of order \(2n \), and by \(F_n \) the Frobenius group of order \(n \).

2. Preliminary results

For a subgroup \(H \) of a group \(G \), denote by \(C_G(H) \) the centralizer of \(H \) in \(G \) and by \(N_G(H) \) the normalizer of \(H \) in \(G \).

Proposition 2.1 ([11, Chapter I, Theorem 4.5]). The quotient group \(N_G(H)/C_G(H) \) is isomorphic to a subgroup of the automorphism group \(\text{Aut}(H) \) of \(H \).

The following proposition is due to Burnside.

Proposition 2.2 ([19, Theorem 8.5.3]). Let \(p \) and \(q \) be primes, and let \(m \) and \(n \) be non-negative integers. Then every group of order \(p^m q^n \) is solvable.

Let \(G \) be a permutation group on a set \(\Omega \). The size of \(\Omega \) is called the degree of \(G \) acting on \(\Omega \).

Proposition 2.3 ([6, Corollary 3.5B]). Every transitive permutation group of prime degree \(p \) is either 2-transitive or solvable with a regular normal Sylow \(p \)-subgroup.

The following proposition is about the permutation group of degree \(p^2 \) for \(p \) a prime.

Proposition 2.4 ([28, Proposition 1]). Any transitive group of degree \(p^2 \) has a regular subgroup.

For a finite group \(G \) and a subset \(S \) of \(G \) such that \(1 \not\in S \) and \(S = S^{-1} \), the Cayley graph \(\text{Cay}(G, S) \) on \(G \) with respect to \(S \) is defined to have vertex set \(V(\text{Cay}(G, S)) = G \) and edge set \(E(\text{Cay}(G, S)) = \{ \{g, sg\} \mid g \in G, s \in S \} \). Clearly, a Cayley graph \(\text{Cay}(G, S) \) is connected if and only if \(S \) generates \(G \). Furthermore, \(\text{Aut}(G, S) = \{ \alpha \in \text{Aut}(G) \mid S^\alpha = S \} \) is a subgroup of the automorphism group \(\text{Aut}(\text{Cay}(G, S)) \). Given a \(g \in G \), define the permutation \(R(g) \) on \(G \) by \(x \mapsto xg, x \in G \). Then \(R(G) = \{ R(g) \mid g \in G \} \), called the right regular representation of \(G \), is a permutation group isomorphic to \(G \). The
Cayley graph is vertex-transitive because it admits the right regular representation \(R(G) \) of \(G \) as a regular group of automorphisms of \(\text{Cay}(G, S) \). A Cayley graph \(\text{Cay}(G, S) \) is said to be normal if \(R(G) \) is normal in \(\text{Aut}(\text{Cay}(G, S)) \).

A graph \(X \) is isomorphic to a Cayley graph on \(G \) if and only if \(\text{Aut}(X) \) has a subgroup isomorphic to \(G \), acting regularly on vertices (see [20]). For two subsets \(S \) and \(T \) of \(G \) not containing the identity 1, if there is an \(\alpha \in \text{Aut}(G) \) such that \(S\alpha = T \), then \(S \) and \(T \) are said to be equivalent, denoted by \(S \equiv T \).

We may easily show that if \(S \equiv T \), then \(\text{Cay}(G, S) \cong \text{Cay}(G, T) \) and \(\text{Cay}(G, S) \) is normal if and only if \(\text{Cay}(G, T) \) is normal.

Proposition 2.5 ([26, Proposition 1.5]). A Cayley graph \(\text{Cay}(G, S) \) is normal if and only if \(\text{Aut}(\text{Cay}(G, S)) \) is isomorphic to \(G \), acting regularly on vertices (see [20]).

From [1, Corollary 1.3], we have the following proposition.

Proposition 2.6. Let \(X = \text{Cay}(G, S) \) be a connected tetravalent Cayley graph on a finite abelian group \(G \) of odd order. Then \(X \) is normal except for \(G = \mathbb{Z}_5 \) and \(X = \mathbb{K}_5 \).

For two subgroups \(M \) and \(N \) of a group \(G \), \(M \rtimes N \) stands for the semidirect product of \(M \) by \(N \). The next proposition characterizes the vertex stabilizers of connected tetravalent \(s \)-transitive graphs (see [14, Lemma 2.5] and [13, Theorem 1.1]).

Proposition 2.7. Let \(X \) be a connected tetravalent \((G, s)\)-transitive graph of odd order. Then \(s \leq 3 \) and the stabilizer \(G_v \) of a vertex \(v \in V(X) \) in \(G \) is as follows:

1. \(G_v \) is a 2-group for \(s = 1 \);
2. \(G_v \cong A_4 \) or \(S_4 \) for \(s = 2 \);
3. \(G_v \cong \mathbb{Z}_3 \times A_4 \), \(\mathbb{Z}_4 \times S_4 \), or \(S_3 \times S_4 \) for \(s = 3 \).

To introduce tetravalent symmetric graphs of order \(3p \) for \(p \) a prime, we define some graphs. Let \(p > 3 \) be a prime and let \(\mathbb{Z}_{3p} = \mathbb{Z}_3 \times \mathbb{Z}_p = \langle a \rangle \times \langle b \rangle \) be the cyclic group of order \(3p \). Define \(\mathcal{C}A_{3p} = \text{Cay}(\mathbb{Z}_{3p}, \{ab, a^{-1}b, ab^{-1}, a^{-1}b^{-1}\}) \).

By the definition of \(G(3p, 2) \) given in [23, Example 3.4], it is easy to see that \(\mathcal{C}A_{3p} \cong G(3p, 2) \) and \(\text{Aut}(\mathcal{C}A_{3p}) = \mathbb{Z}_{3p} \rtimes \mathbb{Z}_2^2 \). The next proposition is about the classification of connected tetravalent symmetric graphs of order \(3p \) (see [23, Theorem]).

Proposition 2.8. Let \(p > 7 \) be a prime and \(X \) a connected tetravalent symmetric graph of order \(3p \). Then \(X \cong \mathcal{C}A_{3p} \).

3. Graph constructions and isomorphisms

In this section we introduce connected tetravalent symmetric graphs of order \(9p \) for \(p \) a prime. The first example is the lexicographic product of \(C_9 \) and \(2K_1 \).
Example 3.1. The lexicographic product $C_9[2K_1]$ is defined as the graph with vertex set $V(C_9) \times V(2K_1)$ such that for any two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ in $V(C_9[2K_1])$, u is adjacent to v in $C_9[2K_1]$ if and only if $\{x_1, x_2\} \in E(C_9)$. Then $C_9[2K_1]$ is a connected tetravalent 1-transitive Cayley graph on the group $Z_9 \times Z_2$ and $\text{Aut}(C_9[2K_1]) = Z_2^3 \rtimes D_{18}$.

From [25, Example 3.2], we have the following example.

Example 3.2. Let $G = \langle a \rangle \times \langle b \rangle \times \langle c \rangle \cong Z_3 \times Z_3 \times Z_2$. The Cayley graph $G_{18} = \text{Cay}(G, \{ca, ca^{-1}, cb, cb^{-1}\})$ is 1-transitive and $\text{Aut}(G_{18}) = G \rtimes D_8$.

Xu and Xu [25] gave a classification of tetravalent arc-transitive Cayley graphs on finite abelian groups. The following example is extracted from [25, Example 3.2 and Theorem 3.5].

Example 3.3. Let $p \geq 3$ be a prime and $G = \langle a \rangle \times \langle b \rangle \cong Z_3 \times Z_{3p}$. Then the Cayley graph $\mathcal{C}A^1_{(3,3p)} = \text{Cay}(G, \{b, b^{-1}, ab, a^{-1}b^{-1}\})$ is 1-regular and $\text{Aut}(\mathcal{C}A^1_{(3,3p)}) = G \rtimes Z_2^2$.

Furthermore, if $p \equiv 3 \pmod{4}$, then there is only one connected tetravalent symmetric Cayley graph on the group G, that is, $\mathcal{C}A^1_{(3,3p)}$, and if $p \equiv 1 \pmod{4}$ there are exactly two connected tetravalent symmetric Cayley graphs on the group G, that is, $\mathcal{C}A^1_{(3,3p)}$ and $\mathcal{C}A^2_{(3,3p)}$, where $\mathcal{C}A^2_{(3,3p)} = \text{Cay}(G, \{b, b^{-1}, ab^w, a^{-1}b^{-w}\})$ and $\text{Aut}(\mathcal{C}A^2_{(3,3p)}) = G \rtimes Z_4$ with w an element of order 4 in Z_{3p}^*.

By [27, Theorems 1 and 3], there is only one connected tetravalent symmetric Cayley graph on the cyclic group of order $9p$ for each prime $p \geq 5$.

Example 3.4. Let $p \geq 5$ be a prime and $G = \langle a \rangle \times \langle b \rangle \cong Z_3 \times Z_p$. The unique connected tetravalent symmetric Cayley graph on G is $\mathcal{C}A_{9p} = \text{Cay}(G, \{ab, a^{-1}b^{-1}, a^{-1}b, ab^{-1}\})$, which is 1-regular and its automorphism group $\text{Aut}(\mathcal{C}A_{9p}) = G \rtimes Z_2^2$.

Let $X = \text{Cay}(H, T)$ be a connected tetravalent symmetric Cayley graph on a non-abelian group H of order 27. Then $(T) = H, T^{-1} = T$ and $|T| = 4$. By [7, Corollary 3.2], X is normal, and hence $\text{Aut}(X)_1 = \text{Aut}(H, T)$ by Proposition 2.5. Since $|H| = 27$, we may assume that $T = \{x, x^{-1}, y, y^{-1}\}$. Thus, $\text{Aut}(H, T)$ is a 2-group and faithful on T, forcing that $\text{Aut}(H, T) \leq D_8$.

Since X is symmetric, $4 \not| |\text{Aut}(H, T)|$. By the elementary group theory, there are two non-abelian groups of order 27:

$G_1(27) = \langle a, b | a^9 = b^3 = 1, b^{-1}ab = a^4 \rangle$;

$G_2(27) = \langle a, b, c | a^3 = b^3 = c^3 = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle$.

If $H = G_1(27)$, then $4 \not| |\text{Aut}(H)|$ because each automorphism $\alpha \in \text{Aut}(H)$ has the following form:

$$\alpha : \begin{cases}
a \mapsto a^j b^i, & i, 9 \leq j \leq 2;
b \mapsto a^{2k} b, & 0 \leq k \leq 2.
\end{cases}$$
This is impossible because $4 \mid \vert \text{Aut}(H,T)\vert$. Thus, $H = G_2(27)$ and $o(x) = o(y) = 3$, where $o(x)$ denotes the order of x in $G_2(27)$. Since $(x, y) = H$ and $[x, y] \in Z(H) = \langle c \rangle$, a, b and c have the same relations as do x, y and $[x, y]$, which implies that the map $a \mapsto x$, $b \mapsto y$, $c \mapsto [x, y]$ induces an automorphism of $G_2(27)$. It follows that $X \cong \text{Cay}(G_2(27), S)$, where $S = \{a, a^{-1}, b, b^{-1}\}$.

Clearly, the maps $a \mapsto b$, $b \mapsto a$, $c \mapsto c$ and $a \mapsto b$, $b \mapsto a^{-1}$, $c \mapsto c$ induce automorphisms of $G_2(27)$, say α_1 and α_2, respectively. Then $\alpha_1, \alpha_2 \in \text{Aut}(G_2(27), S)$ and $\langle \alpha_1, \alpha_2 \rangle \cong D_8$, forcing that X is symmetric. On the other hand, since $\text{Aut}(G_2(27), S) \leq D_8$, one has that $\text{Aut}(G_2(27), S) = D_8$ and $\text{Aut}(X) = G_2(27) \rtimes D_8$. Thus, we have the following example.

Example 3.5. Let $G = G_2(27) = \langle a, b, c \mid a^3 = b^3 = c^3 = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle$ and $S = \{a, a^{-1}, b, b^{-1}\}$. Define

$$G_{27} = \text{Cay}(G, S).$$

Then $\text{Aut}(G_{27}) = G \rtimes D_8$ and G_{27} is the only connected tetravalent symmetric Cayley graph on non-abelian group of order 27.

Let X be a symmetric graph, and A an arc-transitive subgroup of $\text{Aut}(X)$. Let $\{u, v\}$ be an edge of X. Assume that $H = A_u$ is the stabilizer of $u \in V(X)$ and that $g \in A$ interchanges u and v. It is easy to see that the core H_A of H in A (the largest normal subgroup of A contained in H) is trivial, and that HgH consists of all elements of A which maps u to one of its neighbors in X. By [16, 20], the graph X is isomorphic to the coset graph $\text{Cos}(A, H, HgH)$, which is defined as the graph with vertex set $\{Ha \mid a \in A\}$, the set of right cosets of H in A, and edge set $\{\{Ha, Hda\} \mid a \in A, d \in HgH\}$. The valency of $\text{Cos}(A, H, HgH)$ is $|HgH|/|H| = |H : H \cap H^g|$, and $\text{Cos}(A, H, HgH)$ is connected if and only if HgH generates A. By right multiplication, every element in A induces an automorphism of $\text{Cos}(A, H, HgH)$. Since $H_A = 1$, the induced action of A on $V(\text{Cos}(A, H, HgH))$ is faithful, and hence we may view A as a group of automorphisms of $\text{Cos}(A, H, HgH)$.

From [14], one can see that, up to isomorphism, there is only one primitive tetravalent symmetric graph of order n if $n = 45$ or 153.

Example 3.6. Let $G = \text{Aut}(A_6) \cong S_6 \rtimes Z_2$ and let P be a Sylow 2-subgroup of G. By [5], P is a maximal subgroup of G and hence $N_G(P) = P$. Let H be an elementary abelian 2-subgroup of P of order 8. Then $N_G(H) \cong S_4 \rtimes Z_2$. Let d be an involution in $N_G(H) \setminus P$. Define

$$G_{45} = \text{Cos}(G, P, PdP).$$

Then G_{45} is a connected tetravalent 1-transitive graph and $\text{Aut}(G_{45}) \cong \text{Aut}(A_6)$.

Example 3.7. Let $G = \text{PSL}(2, 17)$ and let $P = \langle a, b \mid a^8 = b^2 = 1, bab = a^{-1} \rangle \cong D_{16}$ be a Sylow 2-subgroup of G. By [5], P is a maximal subgroup of G and hence $N_G(P) = P$. Let $H = \langle a^4, b \rangle$. Then $N_G(H) \cong S_4$. Let d be an
involution in $N_G(H) \setminus P$. Define

$$G_{153} = \text{Cos}(G, P, PdP).$$

Then G_{153} is a connected tetravalent 1-transitive graph and Aut(G_{153}) \cong PSL(2, 17).

Since the automorphism groups of the graphs defined in Examples 3.1-3.7 are pairwise non-isomorphic, we have the following lemma.

Lemma 3.8. $G_{9[2K_{1}], G_{18}, CA_{(3,3)p}, CA_{(3,3)p}, G_{27}, G_{45}}$ and G_{153} are connected pairwise non-isomorphic tetravalent symmetric graphs.

4. Classification

This section is devoted to classifying tetravalent symmetric graphs of order 9p for p a prime. First we have the following lemma.

Lemma 4.1. Let p be a prime greater than 3 and G a non-abelian group of order 9p. Then any connected tetravalent normal Cayley graph on G cannot be symmetric.

Proof. Let $X = \text{Cay}(G, S)$ be a connected tetravalent normal Cayley graph. Then $(S) = G$, $S^{-1} = S$ and $|S| = 4$. Since $|G| = 9p$, we may assume $S = \{x, x^{-1}, y, y^{-1}\}$, and since X is normal, Aut(G, S) \cong Aut(X) by Proposition 2.5.

Suppose to the contrary that X is symmetric. Then Aut(G, S) is transitive on S, forcing that $o(x) = o(y)$. Note that $p > 3$. By Sylow Theorem, G has a normal Sylow p-subgroup, which means that $o(x) \neq p$ because $(S) = G$. Denote by $Z(G)$ the center of G. From the elementary group theory, up to isomorphism, there are three non-abelian groups of order 9p for a prime $p > 3$:

- $G_1 = \langle a, b \mid a^p = b^3 = 1, b^{-1}ab = a^r \rangle$, where $r \in Z_p^*$ and $o(r) = 3$;
- $G_2 = \langle a, b \mid a^p = b^3 = 1, b^{-1}ab = a^s \rangle$, where $s \in Z_p^*$ and $o(s) = 9$;
- $G_3 = \langle a, b, c \mid a^p = b^3 = c^3 = [b, c] = [a, b] = 1, c^{-1}ac = a^t \rangle$, where $t \in Z_p^*$ and $o(t) = 3$.

Case 1: $G = G_1$

In this case, $Z(G) = \langle b^3 \rangle$ and $Z(G)$ is the unique subgroup of order 3 in G. Since $(S) = G$, one has $o(x) \neq 3$ and hence $o(x) = o(y) = 3p$ or 9. Similarly, if $o(x) = 3p$, then $G = \langle S \rangle \subseteq Z(G) \times \langle a \rangle$, a contradiction. Thus, $o(x) = 9$ and x, y have the form $a^i b^{3j+1}$ or $a^i b^{3j-1}$. Each automorphism α in Aut(G) can be written as follows:

$$\alpha : \begin{cases}
 a \mapsto a^i, \\
 b \mapsto a^j b^{3k+1}, \quad 1 \leq i \leq p - 1; \\
 b \mapsto a^j b^{3k+1}, \quad 0 \leq j \leq p - 1, \quad 0 \leq k \leq 2.
\end{cases}$$

Clearly, Aut(G) is transitive on the set $\{\langle g, g^{-1} \rangle \mid g \in G, o(g) = 9\}$. We may assume that $x = b$ and $y = a^i b^{3k+1}$. Since $a \mapsto a^i$, $b \mapsto b$ induces an automorphism of G, $S = \{b, b^{-1}, a b^{3k+1}, (a b^{3k+1})^{-1}\}$. Note that every automorphism
of G cannot map b to $a^j b^{3k-1}$. It follows that $\text{Aut}(G, S) \subseteq Z_2$. Thus, $\text{Aut}(G, S)$ cannot be transitive on S, a contradiction.

Case 2: $G = G_2$

Since $o(x) \neq p$, each element in S has order 3 or 9, and since $\langle a, b \rangle$ is a metacyclic normal subgroup of order $3p$ containing all elements of order 3, one has $o(x) \neq 3$. Thus, $o(x) = o(y) = 9$ and x, y have the form $a^i b^{3j+1}$ or $a^i b^{3j-1}$.

Each automorphism α in $\text{Aut}(G)$ can be written as follows:

$$\alpha : \begin{cases} a \mapsto a^i, & 1 \leq i \leq p - 1; \\ b \mapsto ab, & 0 \leq j \leq p - 1. \end{cases}$$

Note that $a \mapsto a^i$, $b \mapsto b$ and $a \mapsto a^j b^j$ induce automorphisms of G. Then $S \equiv \{a^{3k+1}, (a^{3k+1})^{-1}, ab^{3k+1}, (ab^{3k+1})^{-1}\}$. Since every automorphism of G cannot map b^i to $a^j b^{-i}$, one has $\text{Aut}(G, S) \not\subseteq Z_2$. Thus, $\text{Aut}(G, S)$ cannot be transitive on S, a contradiction.

Case 3: $G = G_3$

Since $o(x) \neq p$, each element in S has order 3 or 9. Since (a, b) contains all elements of order $3p$ in G, one has $o(x) = 3$ because $\langle S \rangle = G$. Note that $Z(G) = \langle b \rangle$. Thus, $b, b^2 \not\in S$, and x, y have the form $a^i b^j c$ or $a^i b^j c^{-1}$ with $1 \leq i \leq p$ and $1 \leq j \leq 3$. Each automorphism α in $\text{Aut}(G)$ can be written as follows:

$$\alpha : \begin{cases} a \mapsto a^i, & 1 \leq i \leq p - 1; \\ b \mapsto b^j, & 1 \leq j \leq 2; \\ c \mapsto a^k b^l c, & 0 \leq k \leq p - 1, 0 \leq l \leq 2. \end{cases}$$

Thus, we may assume that $x = c$, and since the map $a \mapsto a^i$, $b \mapsto b^j$, $c \mapsto c$ induces an automorphism of G, $S \equiv \{c, c^{-1}, abc, (abc)^{-1}\}$. Since every automorphism of G cannot map $a^i b^j c$ to $(a^i b^j c)^{-1}$, one has $\text{Aut}(G, S) \not\subseteq Z_2$. Thus, $\text{Aut}(G, S)$ cannot be transitive on S, a contradiction. \hfill \Box

To state the main theorem, we introduce the so called quotient graph. Let X be a graph and let $G \leq \text{Aut}(X)$ be an arc-transitive subgroup on X. Assume that G is imprimitive on $V(X)$ and $B = \{B_1, B_2, \ldots, B_n\}$ is a complete block system of G. The block graph or quotient graph X_G of X relative to B is defined as the graph with vertex set the complete block system B, and with the two blocks adjacent if and only if there is an edge in X between those two blocks. Clearly, if X is G-symmetric, then X_G is G/K-symmetric, where K is the kernel of K on B. For a normal subgroup N of G, the set of the orbits of N forms a complete block system of G. In this case we denote by X_N the quotient graph of X relative to the set of the orbits of N. The following is the main result of this paper.

Theorem 4.2. Let p be a prime. Then any connected tetravalent symmetric graph of order $9p$ is isomorphic to one of the graphs in Table 1. Furthermore, all graphs in Table 1 are pairwise non-isomorphic.
Table 1. Tetravalent s-transitive graphs of order $9p$

<table>
<thead>
<tr>
<th>X</th>
<th>s-transitive</th>
<th>$\text{Aut}(X)$</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_9[2K_1]$</td>
<td>1-transitive</td>
<td>$\mathbb{Z}2^2 \times D{18}$</td>
<td>Example 3.1, $p = 2$</td>
</tr>
<tr>
<td>G_{18}</td>
<td>1-transitive</td>
<td>$(\mathbb{Z}_3^2 \times \mathbb{Z}_2) \times D_8$</td>
<td>Example 3.2, $p = 2$</td>
</tr>
<tr>
<td>G_{27}</td>
<td>1-transitive</td>
<td>$(\mathbb{Z}_3^2 \times \mathbb{Z}_3) \times D_8$</td>
<td>Example 3.5, $p = 3$</td>
</tr>
<tr>
<td>G_{45}</td>
<td>1-transitive</td>
<td>$\text{Aut}(A_6)$</td>
<td>Example 3.6, $p = 5$</td>
</tr>
<tr>
<td>G_{153}</td>
<td>1-transitive</td>
<td>PSL(2,17)</td>
<td>Example 3.7, $p = 17$</td>
</tr>
<tr>
<td>CA_{9p}</td>
<td>1-regular</td>
<td>$\mathbb{Z}_{9p} \rtimes \mathbb{Z}_2^2$</td>
<td>Example 3.4, $p \geq 5$</td>
</tr>
<tr>
<td>$CA_{3(3,3p)}^1$</td>
<td>1-regular</td>
<td>$(\mathbb{Z}3 \times \mathbb{Z}{3p}) \rtimes \mathbb{Z}_2^2$</td>
<td>Example 3.3, $p \geq 3$</td>
</tr>
<tr>
<td>$CA_{3(3,3p)}^{2}$</td>
<td>1-regular</td>
<td>$(\mathbb{Z}3 \times \mathbb{Z}{3p}) \rtimes \mathbb{Z}_4$</td>
<td>Example 3.3, $p \equiv 1(\text{mod } 4)$</td>
</tr>
</tbody>
</table>

Proof. By Lemma 3.8, all graphs in Table 1 are connected pairwise non-isomorphic tetravalent symmetric graphs. Let X be a connected tetravalent symmetric graph of order $9p$. To finish the proof, it suffices to show that X is isomorphic to one of the graphs listed in Table 1.

If $p \leq 7$, then by [17, 24], there are ten connected tetravalent symmetric graphs of order $9p$: two graphs for $p = 2$, two graphs for $p = 3$, four graphs for $p = 5$ and two graphs for $p = 7$. Thus, X is isomorphic to $C_9[2K_2]$, G_{18}, G_{27}, $CA_{(3,3p)}^1$, G_{45}, CA_{45}, $CA_{(3,15)}^1$, $CA_{(3,15)}^2$, CA_{63} or $CA_{(3,21)}^1$. Let $p > 7$ and assume that X is a normal Cayley graph. Then by Examples 3.3, 3.4 and Lemma 4.1, X is isomorphic to CA_{9p}, $CA_{(3,3p)}^1$ or $CA_{(3,3p)}^2$.

Thus, in what follows one may assume that $p > 7$ and X is not a normal Cayley graph, that is, A has no normal regular subgroup on $V(X)$. Then, to finish the proof it suffices to show that $X \cong G_{153}$.

Set $A = \text{Aut}(X)$ and let A_v be the stabilizer of $v \in V(X)$ in A. Since X is symmetric, either A_v is a 2-group or $A_v \cong A_4$, S_4, $C_3 \times A_4$, $C_3 \times S_4$ or $S_3 \times S_4$ by Proposition 2.7. It follows that $|A| \leq 2^5 \cdot 3^2 \cdot p$ for some integer t. Since $p > 7$, every Sylow 2-subgroup of A is also a Sylow 2-subgroup of a stabilizer of some vertex in A, implying that A has no non-trivial normal 2-subgroups.

Suppose that A has an intransitive minimal normal subgroup, say N. Since $|V(X)| = 9p$ and $|A| | 2^5 \cdot 3^2 \cdot p$, N is either a non-abelian simple group, or an elementary abelian 3- or p-group. Let $B = \{B_1, B_2, \ldots, B_n\}$ be the set of orbits of N and K the kernel of A acting on B. Then $N \leq K$. Let $m = |B_1|$. Then $mn = 9p$ with $1 < m, n < 9p$. The quotient graph X_N has vertex set B and $A/K \leq \text{Aut}(X_N)$. Moreover, assume that B_1 is adjacent to B_2 in X_N with $v \in B_1$ and $u \in B_2$ being adjacent in X. Clearly, X_N has valency 2 or 4.

Case 1: X_N has valency 2.

In this case, X_N is a cycle and $A/K \cong D_{2m}$. Since X is symmetric, the induced subgraph $\langle B_1 \cup B_2 \rangle$ of $B_1 \cup B_2$ in X is a union of several cycles of the
same length greater than 4, implying that K_e is a 2-group and K acts faithfully on B_1. Since $A/K \cong D_{2m}$, one has $|A| = 2^s mn = 2^s9p$ for some integer s. This implies that if A has a Hall $\{3,p\}$-subgroup, then it is regular on $V(X)$. Note that $mn = 9p$ with $1 < m, n < 9p$. Thus, $(B_1 \cup B_2) \cong C_{2m}, 3C_6, 3C_{2p}$ or pC_6.

Let $(B_1 \cup B_2) \cong C_{2m}$. Since $\text{Aut}(C_{2m}) \cong D_{4m}$, one has $Z_m \trianglelefteq K \trianglelefteq D_{2m}$, and since $A/K \cong D_{2m}$, A has a normal subgroup of order $9p$, which is regular on $V(X)$ because A_e is a 2-group. Thus, A has a normal regular subgroup, a contradiction.

Let $(B_1 \cup B_2) \cong 3C_6$. Then N has blocks of length 3 on B_1 and since K acts faithfully on B_1, N must be an elementary abelian 3-group and hence K is a $\{2,3\}$-group. By Proposition 2.2, K is solvable, and since $A/K \cong D_{2p}$, A is solvable. Thus, A has a Hall $\{3,p\}$-subgroup, say G, which is regular on $V(X)$. Since $N \unlhd G$, G cannot be isomorphic to G_1, G_2 or G_3 as listed in Lemma 4.1. It follows that G is abelian, and by Proposition 2.6, X is a normal Cayley graph on G, a contradiction.

Now let $(B_1 \cup B_2) \cong 3C_{2p}$ or pC_6. Then $|B_1| = 3p$ and since N is transitive on B_1, N must be a non-abelian simple group, say T. By [5, pp. 12–14], T is one of the following groups in Table 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>Order</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_5</td>
<td>$2^2 \cdot 3 \cdot 5$</td>
<td>2</td>
</tr>
<tr>
<td>A_6</td>
<td>$2^3 \cdot 3^2 \cdot 5$</td>
<td>2^3</td>
</tr>
<tr>
<td>$\text{PSL}(2, 7)$</td>
<td>$2^3 \cdot 3 \cdot 7$</td>
<td>2</td>
</tr>
<tr>
<td>$\text{PSL}(2, 8)$</td>
<td>$2^3 \cdot 3^2 \cdot 7$</td>
<td>3</td>
</tr>
<tr>
<td>$\text{PSL}(2, 17)$</td>
<td>$2^4 \cdot 3^2 \cdot 17$</td>
<td>2</td>
</tr>
<tr>
<td>$\text{PSL}(3, 3)$</td>
<td>$2^4 \cdot 3^3 \cdot 13$</td>
<td>2</td>
</tr>
<tr>
<td>$\text{PSU}(3, 3)$</td>
<td>$2^5 \cdot 3^3 \cdot 7$</td>
<td>3</td>
</tr>
<tr>
<td>$\text{PSU}(4, 2)$</td>
<td>$2^6 \cdot 3^3 \cdot 5$</td>
<td>2</td>
</tr>
</tbody>
</table>

If $(B_1 \cup B_2) \cong 3C_{2p}$, then N has a transitive action of degree 3, which is impossible because N is a non-abelian simple group. Thus, $(B_1 \cup B_2) \cong pC_6$. Since $|A| = 2^s mn = 2^s9p$ and N is intransitive, $9p \nmid |N|$. Then by Table 2, one has $N \cong \text{PSL}(2, 7)$. This is impossible because $p > 7$.

Case 2: X_N has valency 4.

In this case, K_e fixes the neighborhood of v in X pointwise. Thus, $K = N$ is semiregular on $V(X)$ and $A/N \trianglelefteq \text{Aut}(X_N)$. Since $|V(X)| = 9p$, one has $N \cong \mathbb{Z}_p, \mathbb{Z}_3$ or \mathbb{Z}_5.

Let $N \cong \mathbb{Z}_p$. Then the quotient graph X_N has order 9. By Proposition 2.4, A/N contains a regular subgroup, say B/N, on $V(X_N)$, that is, X_N is a Cayley graph on B/N. It follows that $|B/N| = 9$ and hence B/N is abelian. By
Proposition 2.6, \(B/N \trianglelefteq A/N \) and hence \(B \trianglelefteq A \). Thus, \(B \) is a normal regular subgroup of \(A \) on \(V(X) \), a contradiction.

Let \(N \cong \mathbb{Z}_2^3 \). Then \(X_N \) is a tetravalent \(A/N \)-symmetric graph of order \(p \).

Since \(p > 7 \), \(X_N \) is not a complete graph, and hence \(A/N \) has a normal regular Sylow \(p \)-subgroup by Proposition 2.3. This implies that \(A \) has a normal regular subgroup, a contradiction.

Let \(N \cong \mathbb{Z}_3 \). Then \(X_N \) is a connected tetravalent symmetric graph of order \(3p \).

Since \(p > 7 \), by Proposition 2.8 one has \(X_N \cong CA_{3p} \). It follows that \(A/N \) has a normal regular subgroup on \(V(X_N) \) because \(\text{Aut}(CA_{3p}) \cong \mathbb{Z}_3 \times \mathbb{Z}_3^2 \), which implies that \(A \) has a normal regular subgroup on \(V(X) \), a contradiction.

Now we may assume that \(A \) has no intransitive minimal normal subgroup. Thus, every non-trivial normal subgroup of \(A \) is transitive on \(V(X) \). Again let \(N \) be a minimal normal subgroup of \(A \). Then \(N \) is transitive on \(V(X) \) and since \(|V(X)| = 9p \), \(N \) is a non-abelian simple group as listed in Table 2.

Recall that \(p > 7 \) and either \(|N_v| = 2^t \) or \(|N_v| = 3 \cdot 2^2, 3 \cdot 2^3, 3^2 \cdot 2^2, 3^2 \cdot 2^3 \) or \(3^2 \cdot 2^4 \). It follows that \(N \cong \text{PSL}(2, 17) \). Set \(C = C_A(N) \), the centralizer of \(N \) in \(A \). Then \(C \cap N = 1 \) and \(C \) is a \(\{2, 3\} \)-group. If \(C \neq 1 \), then \(C \) is an intransitive normal subgroup of \(A \) because \(|V(X)| = 9p \), which is contrary to our assumption. Thus, \(C = 1 \) and \(A = A/C \cong \text{Aut}(N) \) by Proposition 2.1. Since \(N \cong \text{PSL}(2, 17) \), one has that \(A = \text{PSL}(2, 17) \) or \(\text{PGL}(2, 17) \), and the stabilizer \(A_v \) is a Sylow 2-subgroup of \(A \), which is maximal in \(A \) by [5]. It follows that \(A \) is primitive on \(V(X) \), and by [14, Theorem 1.5] and Example 3.7, \(X \cong G_{15,3} \) and \(A \cong \text{PSL}(2, 17) \).

\(\square \)

Acknowledgements. This work was supported by the National Natural Science Foundation of China (11171020, 10961004).

References

TETRAVALENT SYMMETRIC GRAPHS OF ORDER 9

SONG-TAO GUO
DEPARTMENT OF MATHEMATICS
BEIJING JIAOTONG UNIVERSITY
BEIJING 100044, P. R. CHINA
E-mail address: gsongtao@gmail.com

YAN-QUAN FENG
DEPARTMENT OF MATHEMATICS
BEIJING JIAOTONG UNIVERSITY
BEIJING 100044, P. R. CHINA
E-mail address: yqfeng@bjtu.edu.cn