DOI QR코드

DOI QR Code

비행조건에 따른 항공기 배기플룸의 IR 신호 특성

Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume

  • 고건영 (전북대학교 항공우주공학과) ;
  • 김만영 (전북대학교 항공우주공학과) ;
  • 백승욱 (한국과학기술원 항공우주공학과)
  • 투고 : 2012.05.22
  • 심사 : 2012.09.21
  • 발행 : 2012.10.01

초록

기술 수준에 의해 그 우위가 결정되는 현대 전장에서 항공기 플룸과 복사저부가열은 항공기의 생존성에 관련된 중요한 요인이다. 항공기의 생존성을 향상시키기 위해서는 저부가열, 그리고 항공기 플룸으로부터 방사되는 IR 신호가 감소되어야 한다. 본 연구에서는 IR 신호와 복사저부가열 특성을 고도 5km에서 마하수 0.9와 1.6의 조건으로 설정하여 플룸 내 유동 및 열복사 특성을 고찰하였다. 이를 통해 플룸에서의 IR 신호는 $H_2O$$CO_2$의 영향으로 인한 높은 방사특성을 확인하였다. 그리고 마하수가 높고 거리가 가까울수록 저부면에서의 복사열유속이 증가됨을 확인하였다.

The IR signature and radiative base heating from an aircraft plume have been important factors for aircraft survivability in modern battle fields. In order to enhance the aircraft survivability and reduce the base heating, infrared signatures emitted from an aircraft exhaust plume should be determined. In this work, therefore, IR signatures and radiative base heating characteristics are examined in the plume exhausted from the aircraft with operating at altitude of 5 km in M=0.9 and 1.6, respectively. As a result, it is found that the particular wavelength IR signature has high spectral characteristics because of $H_2O$ and $CO_2$ gases in the plume, and the radiative heat flux coming into the base plane increases with higher Mach number and shorter distance.

키워드

참고문헌

  1. Mahulikar, S. P., Rao, G. A., and Kolhe, P. S., "Infrared Signatures of Low Flying Aircraft and Their Rear Fuselage Skin's Emissivity Optimisation," Journal of Aircraft, Vol. 43, No. 1, 2006, pp.226-232 https://doi.org/10.2514/1.15365
  2. Sonawane, H. R. and Mahulikar, S. P., "Tacktical Air Warface: Generic Model for Aircraft Susceptibility to Infrared Guided Missiles," Journal of Aerospace Sicence Technology, Vol. 16, No. 4, 2011, pp.249-260
  3. Yi, K, J., Baek, S. W., Lee, S. N., Kim, M. Y., and Kim, W. C., "Effects of Nozzle Characteristics on the Rear Fuselage Temperature Distribution," Transactions of the KSAS, Vol. 39, No. 12, 2011, pp.1141-1149
  4. Stockham, L. W. and Love, T. J., "Radiative Heat Transfer from a Cylindrical Cloud of Particles," AIAA Journal, Vol. 6, No. 10, 1968, pp.1935-1940 https://doi.org/10.2514/3.4903
  5. Waston, L. W. and Love, A. L., "Thermal Radiation Model for Solid Rocket Booster Plumes," Journal of Spacecraft and Rockets, Vol. 14, No. 11, 1977, pp.641-647 https://doi.org/10.2514/3.27989
  6. Baek, S. W. and Kim, M. Y., "Analysis of Radiative Heating of a Rocket Plume Base with the Finite-Volume Method," International Journal of Heat and Mass Transfer, Vol. 40, No. 7, 1997, pp.1501-1508 https://doi.org/10.1016/S0017-9310(96)00257-8
  7. Tan, H.-P., Shuai, Y., and Dong, S.-K., "Analysis of Rocket Plume Base Heating by Using Backward Monte-Carlo Method," Journal of Thermophysics and Heat Transfer, Vol. 19, No. 1, 2005, pp.125-127 https://doi.org/10.2514/1.10519
  8. Kim, M. Y., Yu, M. J., Cho, J. H., and Baek, S. Y., "Influence of Particles on Radiative Base Heating from the Rocket Exhaust Plume," Journal of Spacecraft and Rockets, Vol. 45, No. 3, 2008, pp.454-458 https://doi.org/10.2514/1.32229
  9. Lee, S. N. and Baek, S. W., "Analysis of Radiative Heat Flux for Nozzle Flow," Journal of Applied Mechanics and Materials, Vols. 110-116, 2012, pp.3025-3030
  10. Weiss, J. M. and Smith, W. A., "Preconditioning Applied to Variable and Constant Density Flows," AIAA Journal, Vol. 33, No. 11, 1995, pp.2050-2057 https://doi.org/10.2514/3.12946
  11. Smith, T. F., Shen, Z. F., and Friedman, J. N., "Evaluation of Coefficients for the Weighted Sum of Gray Gas Model," Journal of Heat Transfer, Vol. 104, No. 4, 1982, pp.602-608 https://doi.org/10.1115/1.3245174
  12. Liou, M. S., "A Sequel to AUSM: $AUSM^{+}$-up for all Speeds," Journal of Computational Physics, Vol. 214, No. 1, 2006, pp.137-170 https://doi.org/10.1016/j.jcp.2005.09.020
  13. Chai, J. C., Lee, H. S., and Patankar, S. V., "Finite-Volume Method for Radiation Heat Transfer," Journal of Thermophysics and Heat Transfer, Vol. 8, No. 3, 1994, pp.419-425 https://doi.org/10.2514/3.559
  14. Nelson, H. F., "Backward Monte-Carlo Modeling for Rocket Plume Base Heating," Journal of Thermophysics and Heat Transfer, Vol. 6, No. 3, 1992, pp.556-558 https://doi.org/10.2514/3.400

피인용 문헌

  1. Conceptual Study of an Exhaust Nozzle of an Afterburning Turbofan Engine vol.18, pp.3, 2014, https://doi.org/10.6108/KSPE.2014.18.3.062