DOI QR코드

DOI QR Code

Resonance Fiber Bragg Grating Sensor system based on Fourier Domain Mode-locking Laser

분광 영역 모드록킹 레이저를 이용한 공진형 광섬유 격자 센서

  • Received : 2012.09.21
  • Accepted : 2012.10.09
  • Published : 2012.10.25

Abstract

We report a resonance fiber Bragg sensor interrogation based on a Fourier domain mode-locking (FDML) laser. The FDML laser is constructed based on a conventional ring laser cavity configuration with fiber Fabry-Perot tunable filter (FFP-TF). There are two sensor parts which are composed with two FBGs inside the laser cavity. Each sensor part provides a separate laser cavity for the FDML laser. The resonance frequencies of the laser cavities are 46.687 kHz and 44.340 kHz, respectively. We applied a static and a dynamic strain on the FBG sensor system. The slope coefficients of the measured relative wavelength shift and relative time interval from the static strain are found to be $0.61pm/{\mu}{\epsilon}$ and $0.8ns/{\mu}{\epsilon}$, respectively.

본 논문은 분광 영역 모드록킹(Fourier domain mode-locking: FDML) 레이저를 기반으로 공진형 광섬유 격자 센서를 구현한 결과를 보고한다. FDML 레이저는 파브리-페롯 가변 필터를 이용하여 링 형태로 구성하며, 레이저 공진기 안에 광섬유 격자 2개를 한 쌍으로 하여 센서부 2개를 삽입한 구조이다. 광섬유 격자는 반사 거울 역할을 하며, 광섬유 격자의 위치에 따라 독립된 FDML 레이저 공진기를 구성한다. 각각 센서부의 공진 주파수는 46.687 kHz 와 44.340 kHz이다. FBG 센서 시스템에 정적 및 동적 스트레인을 가하였으며, 정적 스트레인에 대해 파장 영역과 시간 영역에서 측정된 스트레인에 대한 변화율은 각각 $0.61pm/{\mu}{\epsilon}$, $0.8ns/{\mu}{\epsilon}$ 이다.

Keywords

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). https://doi.org/10.1109/50.618377
  2. S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998). https://doi.org/10.1364/OL.23.000843
  3. Z. Jin and M. Song, "Fiber grating sensor array interrogation with time-delayed sampling of a wavelength-scanned fiber laser," IEEE Photon. Technol. Lett. 16, 1924-1926 (2004). https://doi.org/10.1109/LPT.2004.831303
  4. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radiofrequency modulation," Opt. Express 13, 2377-2384 (2005). https://doi.org/10.1364/OPEX.13.002377
  5. C.-S. Kim, T. H. Lee, Y. S. Yu, Y.-G. Han, S. B. Lee, and M. Y. Jeong, "Multi-point interrogation of FBG sensor using cascaded flexible wavelength-division Sagnac loop filters," Opt. Express 14, 8546-8551 (2006). https://doi.org/10.1364/OE.14.008546
  6. Y. Wang, Y. Cui, and B. Yun, "A fiber Bragg grating sensor system for simultaneously static and dynamic measurements with a wavelength-swept fiber laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006). https://doi.org/10.1109/LPT.2006.879589
  7. P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, "A new fiber-Bragg-grating sensor interrogation system deploying free-spectral -range-matching scheme with high precision and fast detection rate," IEEE Photon. Technol. Lett. 20, 300-302 (2008). https://doi.org/10.1109/LPT.2007.915638
  8. E. J. Jung, C.-S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, "Characterization of FBG sensor interrogation based on a FDML wavelength swept laser," Opt. Express 16, 16552-16560 (2008).
  9. R. Isago and K. Nakamura, "A high reading rate fiber Bragg grating sensor system using a high-speed swept light source based on fiber vibrations," Meas. Sci. Technol. 20, 034021 (2009). https://doi.org/10.1088/0957-0233/20/3/034021
  10. B. C. Lee, E.-J. Jung, C.-S. Kim, and M. Y. Jeon, "Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 ${\mu}$m Fourier domain mode-locked wavelength-swept laser," Meas. Sci. Technol. 21, 094008 (2010). https://doi.org/10.1088/0957-0233/21/9/094008
  11. B. C. Lee and M. Y. Jeon, "Remote fiber sensor based on cascaded Fourier domain mode-locked laser," Opt. Commun. 284, 4607-4610 (2011). https://doi.org/10.1016/j.optcom.2011.05.066
  12. S. H. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). https://doi.org/10.1364/OE.11.002953
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). https://doi.org/10.1364/OE.14.003225
  14. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547- 2554 (2008). https://doi.org/10.1364/OE.16.002547
  15. M. Y. Jeon, J. Zhang, and Z. Chen, "Characterization of Fourier domain modelocked wavelength swept laser for optical coherence tomography imaging," Opt. Express 16, 3727-3737 (2008). https://doi.org/10.1364/OE.16.003727