DOI QR코드

DOI QR Code

Analysis of Fiber-grating External-cavity Laser Diode Using Large-signal Time-domain Model

대신호 시영역 모델을 이용한 광섬유 격자 외부 공진 레이저 다이오드의 해석

  • Kim, Jae-Seong (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, Youngchul (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Cho, Ho Sung (ELDIS, Inc.)
  • Received : 2012.10.04
  • Accepted : 2012.10.11
  • Published : 2012.10.25

Abstract

A large-signal time-domain model is implemented to analyze an FG-LD (Fiber Grating Laser Diode) in which a reflective laser diode is hybrid-integrated with a fiber Bragg grating (FBG). When the length of the externally integrated resonator is 8 mm, in which the effective FBG length of 2.1 mm is included, a static frequency chirp of 0.44 GHz and a dynamic frequency chirp of 6.4 GHz are observed. In addition, it is also observed that the eye of the 10Gbps NRZ signal is well open. The FG-LD is expected to be a cost-effective solution for a 10Gbps-class single wavelength laser covering a span of 50 km range.

본 논문에서는 RLD (Reflective Laser Diode)와 FBG (Fiber Bragg Grating)가 하이브리드 집적된 LD (이하 FG-LD)의 정적 및 동적 특성을 해석하기 위하여 대신호 시영역 모델링 방법을 구현하였다. FBG의 유효길이 2.1 mm를 포함한 외부 집적 공진기의 길이가 8 m인 경우에 0.44GHz의 동적 주파수 요동과 6.4 GHz 정도의 동적 주파수 요동 결과를 나타내었다. 또한 10 Gbps NRZ 신호의 아이가 크게 오픈된 상태를 잘 유지함을 확인하였다. FG-LD는 50 km 정도의 길이를 커버하는 10 Gbps 급 단일파장 레이저로서의 효용성이 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 광운대학교

References

  1. G.987.1 : "10-gigabit-capable passive optical networks (XG-PON): general requirements," G.987. International Telecommunication Union. January 13, 2010. Retrieved (May 7, 2011).
  2. F. N. Timofeev, I. A. Kostko, P. Bayvel, O. Berger, R. Wyatt, R. Kashyap, I. F. Lealman, and G. D. Maxwell, "10Gb/s directly modulated high temperature-stability external fibre grating lasers for dense WDM networks," Electron. Lett. 35, 1737-1739 (1999). https://doi.org/10.1049/el:19991186
  3. B.-S. Kim, Y. Chung, and J.-S. Lee, "An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes," IEEE J. Quantum Electron. 36, 787-794 (2000). https://doi.org/10.1109/3.848349
  4. L. M. Zhang and J. E. Caroll, "Large signal dynamic model of the DFB laser," IEEE J. Quantum Electron. 28, 604-611 (1992). https://doi.org/10.1109/3.124984
  5. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Caroll, and R. G. S. Plumb, "Dynamic analysis of radiation and side mode suppression in second order DFB laser using time-domain large-signal travelling wave model," IEEE J. Quantum Electron. 30, 1398-1395 (1994).
  6. L. M. Zhang and J. E. Caroll, "Semiconductor 1.55mm laser source with gigabit/second integrated electroabsorptive modulator," IEEE J. Quantum Electron. 30, 2537-2577 (1994).
  7. D. D. Marcenac and J. E. Carroll, "Quantum mechanical model for realistic Fabry-Perot lasers," Proc. IEEE 140, 157-171 (1993).
  8. D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, "Dynamics of monolithic passively mode-locked semiconductor lasers," IEEE J. Quantum Electron. 31, 1051-1058 (1995). https://doi.org/10.1109/3.387042
  9. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (A Wiley-Interscience Publication, New York, USA, 1995), pp. 85-95.