DOI QR코드

DOI QR Code

Body fluid identification in forensics

  • An, Ja-Hyun (Department of Forensic Medicine, Yonsei University College of Medicine) ;
  • Shin, Kyoung-Jin (Department of Forensic Medicine, Yonsei University College of Medicine) ;
  • Yang, Woo-Ick (Department of Forensic Medicine, Yonsei University College of Medicine) ;
  • Lee, Hwan-Young (Department of Forensic Medicine, Yonsei University College of Medicine)
  • Received : 2012.09.20
  • Published : 2012.10.31

Abstract

Determination of the type and origin of the body fluids found at a crime scene can give important insights into crime scene reconstruction by supporting a link between sample donors and actual criminal acts. For more than a century, numerous types of body fluid identification methods have been developed, such as chemical tests, immunological tests, protein catalytic activity tests, spectroscopic methods and microscopy. However, these conventional body fluid identification methods are mostly presumptive, and are carried out for only one body fluid at a time. Therefore, the use of a molecular genetics-based approach using RNA profiling or DNA methylation detection has been recently proposed to supplant conventional body fluid identification methods. Several RNA markers and tDMRs (tissue-specific differentially methylated regions) which are specific to forensically relevant body fluids have been identified, and their specificities and sensitivities have been tested using various samples. In this review, we provide an overview of the present knowledge and the most recent developments in forensic body fluid identification and discuss its possible practical application to forensic casework.

Keywords

References

  1. Kayser, M. and de Knijff, P. (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nat. Rev. Genet. 12, 179-192. https://doi.org/10.1038/nrg2952
  2. Virkler, K. and Lednev, I. K. (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 188, 1-17. https://doi.org/10.1016/j.forsciint.2009.02.013
  3. Shaler, R. C. (2002) Modern forensic biology; in Forensic Science Handbook; Saferstein, R. (ed.), pp. 529-546, Prentice Hall, Upper Saddle River, USA.
  4. Allery, J. P., Telmon, N., Mieusset, R., Blanc, A. and Rouge, D. (2001) Cytological detection of spermatozoa: comparison of three staining methods. J. Forensic Sci. 46, 349-351.
  5. Romero-Montoya, L., Martínez-Rodríguez, H., Pérez, M. A. and Argüello-García, R. (2011) Relationship of spermatoscopy, prostatic acid phosphatase activity and prostate- specific antigen (p30) assays with further DNA typing in forensic samples from rape cases. Forensic Sci. Int. 206, 111-118. https://doi.org/10.1016/j.forsciint.2010.07.012
  6. Santucci, K. A., Nelson, D. G., McQuillen, K. K., Duffy, S. J. and Linakis, J. G. (1999) Wood's lamp utility in the identification of semen. Pediatrics 104, 1342-1344. https://doi.org/10.1542/peds.104.6.1342
  7. Nelson, D. G. and Santucci, K. A. (2002) An alternate light source to detect semen. Acad. Emerg. Med. 9, 1045-1048. https://doi.org/10.1111/j.1553-2712.2002.tb02139.x
  8. Vandenberg, N. and van Oorschot, R. A. (2006) The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical- based screening tests. J. Forensic Sci. 51, 361-370. https://doi.org/10.1111/j.1556-4029.2006.00065.x
  9. Fielder, A., Rehdorf, J., Hilbers, F., Johrdan, L., Stribl, C. and Benecke, M. (2008) Detection of semen (human and boar) and saliva on fabrics by a very high powered UV-/VIS- light source. Open Forensic Sci. J. 1, 12-15. https://doi.org/10.2174/1874402800801010012
  10. Seidl, S., Hausmann, R. and Betz, P. (2008) Comparison of laser and mercury-arc lamp for the detection of body fluids on different substrates. Int. J. Legal Med. 122, 241-244. https://doi.org/10.1007/s00414-007-0214-2
  11. Weber, K. (1966) The use of chemiluminescence of Luminol in forensic medicine and toxicology. I. Identification of blood stains. Dtsch. Z. Gesamte Gerichtl. Med. 57, 410-423.
  12. Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M. and Lago, G. (2007) Forensic application of the luminol reaction as a preumptive test for latent blood detection. Talanta 72, 896-913. https://doi.org/10.1016/j.talanta.2006.12.045
  13. Gaensslen, R. E. (1983) Sourcebook in Forensic Serology, Immunology, and Biochemistry, U.S. Department of Justice, Washington, USA.
  14. Spalding, R. P. (2003) Identification and characterization of blood and bloodstains; in Forensic Science: an Introduction to Scientific and Investigative Techniques; James, S. H. and Nordby, J. J. (eds.), pp. 181-201, CRC Press, Boca Raton, USA.
  15. Quinones, I., Sheppard, D., Harbison, S. and Elliot, D. (2006) Comparative analysis of luminal formulations. Can. Soc. Forensic Sci. J. 40, 53-63.
  16. luczak, S., Wozniak, M., Papuga, M., Stopiniska, K. and Sliwka, K. (2002) A comparison of the Bluestar and luminol effectiveness in bloodstain detection. Arch. Med. Sadowej Kryminol. 56, 239-245.
  17. Castello, A., Alvarez, M. and Verdu, F. (2002) Accuracy, reliability, and safety of luminol in bloodstain investigation. Can. Soc. Forensic Sci. J. 35, 113-121. https://doi.org/10.1080/00085030.2002.10757540
  18. Blum, L. J., Esperanca, P. and Rocquefelte, S. (2006) A new high-performance reagent and procedure for latent bloodstain detection based on luminol chemiluminescence. Can. Soc. Forensic Sci. J. 39, 81-100. https://doi.org/10.1080/00085030.2006.10757139
  19. Ahlquist, D. A. and Schwartz, S. (1975) Use of leuco-dyes in the quantitative colorimetric microdetermination of hemoglobin and other heme compounds. Clin. Chem. 21, 362-369.
  20. Hunt, A. C., Corby, C., Dodd, B. E. and Camps, F. E. (1960) The identification of human blood stains: a critical survey. J. Forensic Med. 7, 112-130.
  21. Cox, M. (1991) A study of the sensitivity and specificity of four presumptive tests for blood. J. Forensic Sci. 36, 1503-1511.
  22. Culliford, B. J. and Nickolls, L. C. (1964) The benzidine test: a critical review. J. Forensic Sci. 9, 175-191.
  23. Holland, V. R. and Saunders, B. C. (1974) A safer substitute for benzidine in the detection of blood. Tetrahedron 20, 3299-3302.
  24. Webb, J. L., Creamer, J. I. and Quickenden, T. I. (2006) A comparison of the presumptive luminol test for blood with four non-chemiluminescent forensic techniques. Luminescence 21, 214-220. https://doi.org/10.1002/bio.908
  25. Johnston, E., Ames, C. E., Dagnall, K. E., Foster, J. and Daniel, B. E. (2008) Comparison of presumptive blood test kits including Hexagon OBTI. J. Forensic Sci. 53, 687-689. https://doi.org/10.1111/j.1556-4029.2008.00727.x
  26. Kaye, S. (1949) Acid phosphatase test for identification of seminal stains. J. Lab. Clin. Med. 34, 728-733.
  27. Greenfield, A. and Sloan, M. A. (2003) Identification of biological fluids and stains; in Forensic Science: an Introduction to Scientific and Investigative Techniques; James, S. H. and Nordby J. J. (eds.), pp. 203-220, CRC Press, Boca Raton, USA.
  28. Whitehead, P. H. and Kipps, A. E. (1975) The significance of amylase in forensic investigations of body fluids. Forensic Sci. 6, 137-144. https://doi.org/10.1016/0300-9432(75)90004-7
  29. Hedman, J., Gustavsson, K. and Ansell, R. (2008) Using the new $Phadebas^{(R)}$ Forensic Press test to find crime scene saliva stains suitable for DNA analysis. Forensic Sci. Int. Genet. Suppl. Series 1, 430-432. https://doi.org/10.1016/j.fsigss.2007.10.205
  30. Myers, J. R. and Adkins, W. K. (2008) Comparison of modern techniques for saliva screening. J. Forensic Sci. 53, 862-867. https://doi.org/10.1111/j.1556-4029.2008.00755.x
  31. Healy, D. A., Hayes, C. J., Leonard, P., McKenna, L. and O'Kennedy, R. (2007) Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 25, 125-131. https://doi.org/10.1016/j.tibtech.2007.01.004
  32. Nadler, R. B., Humphrey, P. A., Smith, D. S., Catalona, W. J. and Ratliff, T. L. (1995) Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J. Urol. 154, 407-413. https://doi.org/10.1016/S0022-5347(01)67064-2
  33. Hochmeister, M. N., Budowle, B., Rudin, O., Gehrig, C., Borer, U., Thali, M. and Dirnhofer, R. (1999) Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid. J. Forensic Sci. 44, 1057-1060.
  34. Kearsey, J., Louie, H. and Poon, H. (2001) Validation study of the "OneStep ABAcard PSA test" kit for RCMP casework. Can. Soc. Forensic Sci. J. 34, 63-72. https://doi.org/10.1080/00085030.2001.10757518
  35. Schmidt, S., Franke, M., Lehmann, J., Loch, T., Stöckle, M. and Weichert-Jacobsen, K. (2001) Prostate-Specific antigen in female urine: a prospective study involving 217 women. Urology 57, 717-720. https://doi.org/10.1016/S0090-4295(00)01093-1
  36. Yokota, M., Mitani, T., Tsujita, H., Kobayashi, T., Higuchi, T., Akane, A. and Nasu, M. (2001) Evaluation of prostate- specific antigen (PSA) membrane test for forensic examination of semen. Legal Med. (Tokyo) 3, 171-176. https://doi.org/10.1016/S1344-6223(01)00031-1
  37. Bauer, M. (2007) RNA in forensic science. Forensic Sci. Int. Gen. 1, 69-74. https://doi.org/10.1016/j.fsigen.2006.11.002
  38. Zubakov, D., Hanekamp, E., Kokshoorn, M., van IJcken, W. and Kayser, M. (2008) Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int. J. Legal Med. 122, 135-142. https://doi.org/10.1007/s00414-007-0182-6
  39. Zubakov, D., Kokshoorn, M., Kloosterman, A. and Kayser, M. (2009) New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int. J. Legal Med. 123, 71-74. https://doi.org/10.1007/s00414-008-0249-z
  40. Setzer, M., Juusola, J. and Ballantyne, J. (2008) Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. J. Forensic Sci. 53, 296-305. https://doi.org/10.1111/j.1556-4029.2007.00652.x
  41. Bauer, M. and Patzelt, D. (2003) Simultaneous RNA and DNA isolation from blood and semen stains. Forensic Sci. Int. 136, 76-78. https://doi.org/10.1016/S0379-0738(03)00219-6
  42. Alvarez, M., Juusola, J. and Ballantyne, J. (2004) An mRNA and DNA co-isolation method for forensic casework samples. Anal. Biochem. 335, 289-298. https://doi.org/10.1016/j.ab.2004.09.002
  43. Haas, C., Hanson, E., Bar, W., Banemann, R., Bento, A. M., Berti, A., Borges, E., Bouakaze, C., Carracedo, A., Carvalho, M., Choma, A., Dötsch, M., Durianciková, M., Hoff-Olsen, P., Hohoff, C., Johansen, P., Lindenbergh, P. A., Loddenkötter, B., Ludes, B., Maroñas, O., Morling, N., Niederstätter, H., Parson, W., Patel, G., Popielarz, C., Salata, E., Schneider, P. M., Sijen, T., Sviezena, B., Zatkalíková, L. and Ballantyne, J. (2011) mRNA profiling for the identification of blood-results of a collaborative EDNAP exercise. Forensic Sci. Int. Genet. 5, 21-26. https://doi.org/10.1016/j.fsigen.2010.01.003
  44. Haas, C., Hanson, E., Anjos, M. J., Bar, W., Banemann, R., Berti, A., Borges, E., Bouakaze, C., Carracedo, A., Carvalho, M., Castella, V., Choma, A., De Cock, G., Dotsch, M., Hoff-Olsen, P., Johansen, P., Kohlmeier, F., Lindenbergh, P. A., Ludes, B., Maronas, O., Moore, D., Morerod, M. L., Morling, N., Niederstatter, H., Noel, F., Parson, W. Patel, G., Popielarz, C. Salata, E., Schneider, P. M., Sijen, T., Sviezena, B., Turanska, M., Zatkalikova, L. and Ballantyne, J. (2012) RNA/DNA co-analysis from blood stains-results of a second collaborative EDNAP exercise. Forensic Sci. Int. Genet. 6, 70-80. https://doi.org/10.1016/j.fsigen.2011.02.004
  45. Juusola, J. and Ballantyne, J. (2005) Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 152, 1-12. https://doi.org/10.1016/j.forsciint.2005.02.020
  46. Juusola, J. and Ballantyne, J. (2007) mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J. Forensic Sci. 52, 1252-1262.
  47. Nussbaumer, C., Gharehbaghi-Schnell, E. and Korschineck, I. (2006) Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci. Int. 157, 181-186. https://doi.org/10.1016/j.forsciint.2005.10.009
  48. Haas, C., Klesser, B., Maake, C., Bär, W. and Kratzer, A. (2009) mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci. Int. Genet. 3, 80-88. https://doi.org/10.1016/j.fsigen.2008.11.003
  49. Vennemann, M. and Koppelkamm, A. (2010). mRNA profiling in forensic genetics I: Possibilities and limitations. Forensic Sci. Int. 203, 71-75. https://doi.org/10.1016/j.forsciint.2010.07.006
  50. Liu, B., Lague, J. R., Nunes, D. P., Toselli, P., Oppenheim, F. G., Soares, R. V., Troxler, R. F. and Offner, G. D. (2002) Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands. J. Histochem. Cytochem. 50, 811-820. https://doi.org/10.1177/002215540205000607
  51. Fleming, R. I. and Harbison, S. (2010) The use of bacteria for the identification of vaginal secretions. Forensic Sci. Int. Genet. 4, 311-315. https://doi.org/10.1016/j.fsigen.2009.11.008
  52. Hanson, E. K., Lubenow, H. and Ballantyne, J. (2009) Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 387, 303-314. https://doi.org/10.1016/j.ab.2009.01.037
  53. Zubakov, D., Boersma, A. W., Choi, Y., van Kuijk, P. F., Wiemer, E. A. and Kayser, M. (2010) MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Legal Med. 124, 217-226. https://doi.org/10.1007/s00414-009-0402-3
  54. Wang, Z., Luo, H. B., Pan, X. F., Liao, M. and Hou, Y. P. (2012) A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Sci. Int. Genet. 6, 419-423. https://doi.org/10.1016/j.fsigen.2011.08.008
  55. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  56. Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376-385. https://doi.org/10.1038/nrm1644
  57. Jost, D., Nowojewski, A. and Levine, E. (2011) Small RNA biology is systems biology. BMB Rep. 44, 11-21. https://doi.org/10.5483/BMBRep.2011.44.1.11
  58. Sood, P., Krek, A., Zavolan, M., Macino, G. and Rajewsky, N. (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. U.S.A. 103, 2746-2751. https://doi.org/10.1073/pnas.0511045103
  59. Liang, Y., Ridzon, D., Wong, L. and Chen, C. (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8, 166. https://doi.org/10.1186/1471-2164-8-166
  60. Frumkin, D., Wasserstrom, A., Budowle, B. and Davidson, A. (2011) DNA methylation-based forensic tissue identification. Forensic Sci. Int. Genet. 5, 517-524. https://doi.org/10.1016/j.fsigen.2010.12.001
  61. Lee H. Y., Park, M. J., Choi, A., An, J. H., Yang, W. I. and Shin, K. J. (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int. J. Legal Med. 126, 55-62. https://doi.org/10.1007/s00414-011-0569-2
  62. An, J. H., Choi, A., Shin, K. J., Yang, W. I. and Lee, H. Y. (2012) DNA methylation-specific multiplex assays for body fluid identification. Int. J. Legal Med. (in press) http://dx.doi.org/10.1007/s00414-012-0719-1.
  63. Wasserstrom, A., Frumkin, D., Davidson, A., Shpitzen, M., Herman, Y. and Gafny, R. (2012) Demonstration of DSI-semen- A novel DNA methylation-based forensic semen identification assay. Forensic Sci. Int. Genet. (in press) http://dx.doi.org/10.1016/j.fsigen.2012.08.009.
  64. Larue, B. L., King, J. L. and Budowle, B. (2012) A validation study of the Nucleix DSI-Semen kit-a methylation-based assay for semen identification. Int. J. Legal Med. (in press) http://dx.doi.org/10.1007/s00414-012-0760-0.
  65. Madi, T., Balamurugan, K., Bombardi, R., Duncan, G. and McCord, B. (2012) The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing. Electrophoresis 33, 1736-1745. https://doi.org/10.1002/elps.201100711
  66. Miranda, T. B. and Jones, P. A. (2007) DNA methylation: the nuts and bolts of repression. J. Cell Physiol. 213, 384-390. https://doi.org/10.1002/jcp.21224
  67. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. and Cedar, H. (2003) The role of DNA methylation in setting up chromatin structure during development. Nat. Genet. 34, 187-192. https://doi.org/10.1038/ng1158
  68. Byun, H. M., Siegmund, K. D., Pan, F.,Weisenberger, D. J., Kanel, G., Laird, P. W. and Yang, A. S. (2009) Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet. 18, 4808-4817. https://doi.org/10.1093/hmg/ddp445
  69. Song, F., Smith, J. F., Kimura, M. T., Morrow, A. D., Matsuyama, T., Nagase, H. and Held, W. A. (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. U.S.A. 102, 3336-3341. https://doi.org/10.1073/pnas.0408436102
  70. Ohgane, J., Yagi, S. and Shiota, K. (2008) Epigenetics: the DNA methylation profile of tissue-dependent and differentially methylated regions in cells. Placenta 29, S29-35. https://doi.org/10.1016/j.placenta.2007.09.011
  71. Koch, C. M. and Wagner, W. (2011) Epigenetic-aging-signature to determine age in different tissues. Aging 3, 1018-1027. https://doi.org/10.18632/aging.100395
  72. Lee, J. and Ryu, H. (2010) Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker? BMB Rep. 43, 649-655. https://doi.org/10.5483/BMBRep.2010.43.10.649

Cited by

  1. DNA methylation: the future of crime scene investigation? vol.40, pp.7, 2013, https://doi.org/10.1007/s11033-013-2525-3
  2. Improvement and automation of a real-time PCR assay for vaginal fluids vol.262, 2016, https://doi.org/10.1016/j.forsciint.2016.03.016
  3. Informativeness of NGS Analysis for Vaginal Fluid Identification vol.62, pp.1, 2017, https://doi.org/10.1111/1556-4029.13222
  4. Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American groups vol.138, pp.21, 2013, https://doi.org/10.1039/c3an01062g
  5. Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA vol.128, pp.1, 2014, https://doi.org/10.1007/s00414-013-0918-4
  6. Evaluation of a Visualization Assay for Blood on Forensic Evidence vol.60, pp.3, 2015, https://doi.org/10.1111/1556-4029.12720
  7. RNA/DNA co-analysis from human skin and contact traces – results of a sixth collaborative EDNAP exercise vol.16, 2015, https://doi.org/10.1016/j.fsigen.2015.01.002
  8. A probabilistic approach to body fluid typing interpretation: an exploratory study on forensic saliva testing 2015, https://doi.org/10.1093/lpr/mgv014
  9. Ages at a Crime Scene: Simultaneous Estimation of the Time since Deposition and Age of Its Originator vol.88, pp.12, 2016, https://doi.org/10.1021/acs.analchem.6b01169
  10. The Role of Forensic Botany in Crime Scene Investigation: Case Report and Review of Literature vol.59, pp.3, 2014, https://doi.org/10.1111/1556-4029.12401
  11. Forensic discrimination of vaginal epithelia by DNA methylation analysis through pyrosequencing vol.37, pp.21, 2016, https://doi.org/10.1002/elps.201600037
  12. Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study vol.129, pp.1, 2015, https://doi.org/10.1007/s00414-014-1066-1
  13. Forensic determination of blood sample age using a bioaffinity-based assay vol.140, pp.5, 2015, https://doi.org/10.1039/C4AN02269F
  14. Assessing the impact of common forensic presumptive tests on the ability to obtain results using a novel rapid DNA platform vol.17, 2015, https://doi.org/10.1016/j.fsigen.2015.04.003
  15. Investigation of the Application of miR10b and miR135b in the Identification of Semen Stains vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137067
  16. Direct identification of forensic body fluids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry vol.397-398, 2016, https://doi.org/10.1016/j.ijms.2016.01.002
  17. Biocomputing approach in forensic analysis vol.32, pp.1, 2017, https://doi.org/10.1080/17445760.2016.1140166
  18. Automation of DNA and miRNA co-extraction for miRNA-based identification of human body fluids and tissues vol.37, pp.21, 2016, https://doi.org/10.1002/elps.201600365
  19. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification vol.35, pp.21-22, 2014, https://doi.org/10.1002/elps.201400075
  20. A probabilistic approach for the interpretation of RNA profiles as cell type evidence vol.20, 2016, https://doi.org/10.1016/j.fsigen.2015.09.007
  21. You can’t hide encoded evidence: DNA recovery from different fabrics after washing 2018, https://doi.org/10.1080/00450618.2016.1237545
  22. Logical Framework of Forensic Identification: Ability to Resist Fabricated DNA vol.57, pp.11-12, 2015, https://doi.org/10.1007/s12033-015-9893-y
  23. Forensic Identification of Human Blood: comparison of two one-step presumptive tests for blood screening of crime scene samples. vol.3, pp.1, 2014, https://doi.org/10.15260/rbc.v3i1.68
  24. More about RSID-saliva: the effect of sample age and the environment on the test’s efficacy vol.47, pp.4, 2015, https://doi.org/10.1080/00450618.2014.992473
  25. The effectiveness of the RSID confirmatory test kit for human alpha amylase: the effects of environmental factors and substrate materials vol.49, pp.2, 2017, https://doi.org/10.1080/00450618.2016.1153147
  26. Forensic DNA methylation profiling from evidence material for investigative leads vol.49, pp.7, 2016, https://doi.org/10.5483/BMBRep.2016.49.7.070
  27. Emerging spectrometric techniques for the forensic analysis of body fluids vol.64, 2015, https://doi.org/10.1016/j.trac.2014.08.011
  28. High-resolution melt analysis of DNA methylation to discriminate semen in biological stains vol.494, 2016, https://doi.org/10.1016/j.ab.2015.10.002
  29. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: Results of a fourth and fifth collaborative EDNAP exercise vol.8, pp.1, 2014, https://doi.org/10.1016/j.fsigen.2013.09.009
  30. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis vol.28, 2017, https://doi.org/10.1016/j.fsigen.2017.02.002
  31. Forensic miRNA: Potential biomarker for body fluids? vol.14, 2015, https://doi.org/10.1016/j.fsigen.2014.09.002
  32. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR vol.22, 2016, https://doi.org/10.1016/j.fsigen.2016.01.018
  33. New age of quick and onsite bioassays for forensics: where are we now? vol.6, pp.4, 2014, https://doi.org/10.4155/bio.13.343
  34. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers vol.17, 2015, https://doi.org/10.1016/j.fsigen.2015.03.002
  35. Role of oral fluids in DNA investigations vol.22, 2014, https://doi.org/10.1016/j.jflm.2013.12.007
  36. The Differentiation of Menstrual from Venous Blood and Other Body Fluids on Various Substrates Using ATR FT-IR Spectroscopy vol.62, pp.1, 2017, https://doi.org/10.1111/1556-4029.13250
  37. Validation of an immunochromatographic D-dimer test to presumptively identify menstrual fluid in forensic exhibits vol.129, pp.1, 2015, https://doi.org/10.1007/s00414-014-1097-7
  38. DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood vol.24, 2016, https://doi.org/10.1016/j.fsigen.2016.06.007
  39. A collaborative exercise on DNA methylation based body fluid typing vol.37, pp.21, 2016, https://doi.org/10.1002/elps.201600256
  40. Improving Luminol Blood Detection in Forensics vol.61, pp.5, 2016, https://doi.org/10.1111/1556-4029.13141
  41. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification vol.16, 2015, https://doi.org/10.1016/j.fsigen.2014.12.008
  42. Biocatalytic analysis of biomarkers for forensic identification of gender vol.139, pp.3, 2014, https://doi.org/10.1039/C3AN02055J
  43. Comprehensive examination of conventional and innovative body fluid identification approaches and DNA profiling of laundered blood- and saliva-stained pieces of cloths vol.132, pp.1, 2018, https://doi.org/10.1007/s00414-017-1691-6
  44. Improving body fluid identification in forensic trace evidence—construction of an immunochromatographic test array to rapidly detect up to five body fluids simultaneously vol.132, pp.1, 2018, https://doi.org/10.1007/s00414-017-1724-1
  45. Comparison of Catalytic and Immunological Amylase Tests for Identifying of Saliva from Degraded Samples pp.00221198, 2018, https://doi.org/10.1111/1556-4029.13936
  46. Forensics in hand: new trends in forensic devices (2013–2017) pp.1759-9679, 2018, https://doi.org/10.1039/C8AY01389F
  47. Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29264-2
  48. Soft and Robust Identification of Body Fluid Using Fourier Transform Infrared Spectroscopy and Chemometric Strategies for Forensic Analysis vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26873-9
  49. Determination of Ethanol in Blood Samples Using Partial Least Square Regression Applied to Surface Enhanced Raman Spectroscopy vol.34, pp.2, 2018, https://doi.org/10.5487/TR.2018.34.2.127
  50. Development of a qPCR assay for detection of secretion types pp.1434-5196, 2019, https://doi.org/10.1007/s00194-018-0294-y
  51. Development of a microfluidic device (μPADs) for forensic serological analysis vol.11, pp.5, 2019, https://doi.org/10.1039/C8AY02080A