DOI QR코드

DOI QR Code

1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish

  • Received : 2012.03.02
  • Accepted : 2012.05.04
  • Published : 2012.10.31

Abstract

We recently reported that a water extract of laurel or turmeric, 1,8-cineole enriched fractions, showed hypolipidemic activity in the zebrafish model. Therefore, the present study investigated the cineole's anti-oxidant and anti-inflammatory activities in lipoprotein metabolism in vitro and in vivo. Cineole had inhibitory effects on cupric ion-mediated oxidation of lipoproteins in general, while simultaneously enhancing ferric ion removal ability in high-density lipoprotein (HDL). Hypercholesterolemia was induced in zebrafish using cholesterol-feeding treatment, 4% cholesterol, for 3 weeks. After feeding with or without the addition of cineole, the results revealed that cineole possessed lipid-lowering and anti-inflammatory activities in hypercholesterolemic zebrafish. In addition, serum amyloid A and interleukin-6 levels were lowered and lipid accumulation was decreased in the liver. Conclusively, 1,8-cineole was found to have anti-oxidant activities in lipoprotein metabolism both in vitro and in vivo with simultaneous reduction of lipid accumulation in the liver of zebrafish.

Keywords

References

  1. Jin, S., Hong, J. H., Jung, S. H. and Cho, K. H. (2011) Turmeric and laurel aqueous extracts exhibit in vitro anti-atherosclerotic activity and in vivo hypolipidemic effects in a zebrafish model. J. Med. Food 14, 247-256 https://doi.org/10.1089/jmf.2009.1389
  2. Jin, S. and Cho, K. H. (2011) Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti- atherosclerotic activity in vitro and in vivo hypolpidemic activity in zebrafish. Food Chem. Toxicol. 49, 1521-1529. https://doi.org/10.1016/j.fct.2011.03.043
  3. Khan, A., Zaman, G. and Anderson, R. A. (2009) Bay leaves improve glucose and lipid profile of people with type 2 diabetes. J. Clin. Biochem. Nutr. 44, 52-56. https://doi.org/10.3164/jcbn.08-188
  4. Babin, P. J. and Vernier, J. M. (1989) Plasma lipoproteins in fish. J. Lipid Res. 30, 467-489.
  5. Trede, N. S., Zapata, A. and Zon, L. I. (2001) Fishing for lymphoid genes. Trends Immunol. 22, 302-307. https://doi.org/10.1016/S1471-4906(01)01939-1
  6. Park, K. H. and Cho, K. H. (2011) A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. Fish Shellfish Immunol. 31, 904-910. https://doi.org/10.1016/j.fsi.2011.08.006
  7. Stoletov, K., Fang, L., Choi, S. H., Hartvigsen, K., Hansen, L. F., Hall, C., Pattison, J., Juliano, J., Miller, E. R., Almazan, F., Crosier, P., Witztum, J. L., Klemke, R. L. and Miller, Y. I. (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ. Res. 104, 952-960. https://doi.org/10.1161/CIRCRESAHA.108.189803
  8. Kim, J. Y., Seo, J. and Cho, K. H. (2011) Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin- fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food Chem. Toxicol. 49, 2899-2905. https://doi.org/10.1016/j.fct.2011.08.001
  9. Galle, J., Hansen-Hagge, T., Wanner, C. and Seibold, S. (2006) Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis 185, 219-226. https://doi.org/10.1016/j.atherosclerosis.2005.10.005
  10. Cho, K. H. (2009) Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications. BMB. Rep. 42, 393-400. https://doi.org/10.5483/BMBRep.2009.42.7.393
  11. Lewis, G. F. and Rader, D. J. (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 96, 1221-1232. https://doi.org/10.1161/01.RES.0000170946.56981.5c
  12. Smith, J. D. (2010) Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler. Thromb. Vasc. Biol. 30, 151-155. https://doi.org/10.1161/ATVBAHA.108.179226
  13. Curtiss, L. K. and Witztum, J. L. (1985) Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 34, 452-461. https://doi.org/10.2337/diabetes.34.5.452
  14. Younis, N., Charlton-Menys, V., Sharma, R., Soran, H. and Durrington, P. N. (2009) Glycation of LDL in non-diabetic people: small dense LDL is preferentially glycated both in vivo and in vitro. Atherosclerosis 202, 162-168. https://doi.org/10.1016/j.atherosclerosis.2008.04.036
  15. Maciel, M. V., Morais, S. M., Bevilaqua, C. M., Silva, R. A., Barros, R. S., Sousa, R. N., Sousa, L. C., Brito, E. S. and Souza-Neto, M. A. (2010) Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet. Parasitol. 167, 1-7. https://doi.org/10.1016/j.vetpar.2009.09.053
  16. Singh, H. P., Mittal, S., Kaur, S., Batish, D. R. and Kohli, R. K. (2009) Characterization and antioxidant activity of essential oils from fresh and decaying leaves of eucalyptus tereticornis. J. Agric. Food Chem. 57, 6962-6966. https://doi.org/10.1021/jf9012407
  17. Hendry, E. R., Worthington, T., Conway, B. R. and Lambert, P. A. (2009) Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 64, 1219-1225. https://doi.org/10.1093/jac/dkp362
  18. Williams, A. C., Edwards, H. G. M., Lawson, E. E. and Barry, B. W. (2006) Molecular interactions between the penetration enhancer 1,8-cineole and human skin. J. Raman. Spectrosc. 37, 361-366. https://doi.org/10.1002/jrs.1468
  19. Nascimento, N. R., Refosco, R. M., Vasconcelos, E. C., Kerntopf, M. R., Santos, C. F., Batista, F. J., De Sousa, C. M. and Fonteles, M. C. (2009) 1,8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle. J. Pharm. Pharmacol. 61, 361-366. https://doi.org/10.1211/jpp.61.03.0011
  20. Eberini, I., Calabresi, L., Wait, R., Tedeschi, G., Pirillo, A., Puglisi, L., Sirtori, C. R. and Gianazza, E. (2002) Macrophage metalloproteinases degrade high-density-lipoprotein- associated apolipoprotein A-I at both the N- and C-termini. Biochem. J. 362, 627-634. https://doi.org/10.1042/0264-6021:3620627
  21. Eberini, I., Gianazza, E., Breghi, L., Klugmann, S., Calabresi, L., Gomaraschi, M., Mombelli, G., Brusoni, B., Wait, R. and Sirtori, C. R. (2007) Apolipoprotein A-I breakdown is induced by thrombolysis in coronary patients. Ann. Med. 39, 306-311. https://doi.org/10.1080/07853890701288760
  22. Nicholls, S. J., Zheng, L. and Hazen, S. L. (2005) Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends. Cardiovasc. Med. 15, 212-219. https://doi.org/10.1016/j.tcm.2005.06.004
  23. Panzenböck, U., Kritharides, L., Raftery, M., Rye, K. A. and Stocker, R. (2000) Oxidation of methionine residues to methionine sulfoxides does not decrease potential antiatherogenic properties of apolipoprotein A-I. J. Biol. Chem. 275, 19536-19544. https://doi.org/10.1074/jbc.M000458200
  24. Shao, B., Cavigiolio, G., Brot, N., Oda, M. N. and Heinecke, J. W. (2008) Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc. Natl. Acad. Sci. U.S.A. 105, 12224-12229 https://doi.org/10.1073/pnas.0802025105
  25. Wong, Y. Q., Binger, K. J., Howlett, G. J. and Griffin, M. D. (2010) Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proc. Natl. Acad. Sci. U.S.A. 107, 1977-1982. https://doi.org/10.1073/pnas.0910136107
  26. Fielding, C. J. and Fielding, P. E. (1995) Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36, 211-228.
  27. Benzie, I. F. and Strain, J. J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292
  28. Esterbauer, H., Striegl, G., Puhl, H. and Rotheneder, M. (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 6, 67-75. https://doi.org/10.3109/10715768909073429
  29. Noble, R. P. (1968) Electrophoretic separation of plasma lipoproteins in agarose gel. J. Lipid Res. 9, 693-700.
  30. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  31. Eckerson, H. W., Wyte, C. M. and La Du, B. N. (1983) The human serum paraoxonase/arylesterase polymorphism. Am. J. Hum. Genet. 35, 1126-1138.
  32. Kim, J., Park, H. H., Choi, I., Kim, Y. O. and Cho, K. H. (2010) Severely modified lipoprotein properties without a change in cholesteryl ester transfer protein activity in patients with acute renal failure secondary to Hantaan virus infection. BMB Rep. 43, 535-540 https://doi.org/10.5483/BMBRep.2010.43.8.535
  33. Park, K. H., Jang, W. J., Kim, K. Y., Kim, J. R. and Cho, K. H. (2010) Fructated apolipoprotein A-I showed severe structural modification and loss of beneficial functions in lipid-free and lipid-bound state with acceleration of atherosclerosis and senescence. Biochem. Biophys. Res. Commun. 392, 295-300. https://doi.org/10.1016/j.bbrc.2009.12.179

Cited by

  1. 1,8-Cineole Ameliorates Steatosis of Pten Liver Specific KO Mice via Akt Inactivation vol.16, pp.6, 2015, https://doi.org/10.3390/ijms160612051
  2. Chemical Polymorphism and Composition of Leaf Essential Oils ofCinnamomum kanehiraeUsing Gas Chromatography/Mass Spectrometry, Cluster Analysis, and Principal Component Analysis vol.35, pp.3, 2015, https://doi.org/10.1080/02773813.2014.924967
  3. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB activity in mice vol.92, pp.24-26, 2013, https://doi.org/10.1016/j.lfs.2013.05.009
  4. 1,8-Cineol Attenuates LPS-Induced Acute Pulmonary Inflammation in Mice vol.37, pp.2, 2014, https://doi.org/10.1007/s10753-013-9770-4
  5. Zebrafish dives into food research: effectiveness assessment of bioactive compounds vol.7, pp.6, 2016, https://doi.org/10.1039/C6FO00046K
  6. Dysfunctional Lipoproteins from Young Smokers Exacerbate Cellular Senescence and Atherogenesis with Smaller Particle Size and Severe Oxidation and Glycation vol.140, pp.1, 2014, https://doi.org/10.1093/toxsci/kfu076
  7. Improved Lipid Profile Associated with Daily Consumption of Tri-Sura-Phon in Healthy Overweight Volunteers: An Open-Label, Randomized Controlled Trial vol.2017, 2017, https://doi.org/10.1155/2017/2687173
  8. 1, 8-Cineol Protect Against Influenza-Virus-Induced Pneumonia in Mice vol.39, pp.4, 2016, https://doi.org/10.1007/s10753-016-0394-3
  9. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research vol.768, 2015, https://doi.org/10.1016/j.ejphar.2015.10.031
  10. leaf extract controls inflammation by suppressing NLRP3 inflammasome activation pp.00219541, 2018, https://doi.org/10.1002/jcp.27434
  11. ) exposed to toxic concentration of ambient copper vol.49, pp.9, 2018, https://doi.org/10.1111/are.13765
  12. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science vol.58, pp.7, 2018, https://doi.org/10.1111/head.13345
  13. Antioxidant, Antidiabetic and Hypocholesterolemic Activities of Extracts vol.21, pp.2, 2018, https://doi.org/10.1080/0972060X.2018.1439406