DOI QR코드

DOI QR Code

노치 유무와 섬유혼입률에 따른 UHPCC의 휨인장강도 비교

Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites

  • 투고 : 2012.02.20
  • 심사 : 2012.07.27
  • 발행 : 2012.10.31

초록

이 연구에서는 UHPCC에서 섬유혼입률에 따른 초기균열강도 및 휨인장강도의 변화를 0~5 vol.% 범위에서 조사하였으며, 노치의 여부에 따른 영향을 파악하기 위해 노치가 없는 보에 대한 4점 재하실험 및 노치 낸 보에 대한 3점 재하실험을 같이 실시하였다. 실험 결과로부터 섬유혼입률이 증가함에 따라 휨인장강도는 선형적으로 강도가 향상됨을 확인할 수 있었고, 초기균열강도의 경우에는 1 vol.% 이상에서는 강도향상을 나타내었으나 그 이하의 섬유혼입에서는 강도향상 효과가 거의 없는 것으로 나타났다. 노치 유무에 따른 휨 실험으로부터 구한 UHPCC의 초기균열발생강도 및 휨 인장강도를 비교했을 때, 섬유혼입률에 따라 노치의 영향이 변하는 것으로 나타났다. 섬유혼입률이 증가함에 따라 노치에서의 응력집중의 영향이 감소하여 강도 차이가 점차 줄어들었으며, 높은 섬유혼입률에서는 노치에 의한 응력집중효과는 없어지고 균열면의 상태 및 크기효과의 영향이 지배적으로 작용하여 노치낸 보의 강도가 좀 더 크게 나타났다.

In this study, bending tests were performed on beam specimens made of UHPCC with the fiber content range of 0~5 vol% to investigate the contribution of fiber content to first cracking strength and flexural tensile strength. Also, four-point bending tests for unnotched beam as well as three-point bending test for notched beam were performed to estimate the effect of the presence of notch on the strengths. The experiment result showed that the increase in fiber content made linear improvement in the flexural tensile strength; whereas first cracking strength was enhanced only when at least 1 vol% of fibers was incorporated. Comparison of the bending test results with and without notch showed that the notch effect varied with the fiber content. The increase in fiber content diminished the effect of stress concentration on the notch tip, reducing the difference in the strengths. With much higher fiber content, the effect of stress concentration almost disappeared and the defection on cracking plane or the size effect dominated the strengths, consequently resulting in higher strengths in the notched beams than the unnotched ones.

키워드

참고문헌

  1. Li, V. C. and Fischer, G., "Reinforced ECC-An Evolution from Materials to Structures," Proceedings of the 1st fib Congress-Concrete Structures in the 21st Century, Osaka, 2002, pp. 105-122.
  2. Kim, K. S., Kim, J. W., Lee, Y. W., and Bae, J. S., "The Effects of Steel Fiber on the Fracture Toughness and Strength of Concrete," Journal of the Korea Concrete Institute, Vol. 6, No. 1, 1994, pp. 131-141.
  3. Fanella, D. A. and Naaman, A. E., "Stress-Strain Properties of Fiber Reinforced Mortar in Compression," ACI Journal Proceedings, Vol. 82, No. 4, 1985, pp. 475-483.
  4. Ezeldin, S. and Balaguru, P. N., "Normal-and High-Strength Fiber-Reinforced Concrete under Compression," Journal of Materials in Civil Engineering, Vol. 4, No. 4, 1992, pp. 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  5. Nataraja, M. C., Dhang, N., and Gupta, A. P., "Stress-Strain Curve for Steel-fiber Reinforced Concrete under Compression," Cement and Concrete Composites, Vol. 21, No. 5-6, 1999, pp. 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  6. Song, P. S. and Hwang, S., "Mechanical Properties of High- Strength Steel Fiber-Feinforced Concrete," Construction and Building Materials, Vol. 18, Issue 9, 2004, pp. 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  7. Yazici, S., Inan, G., and Tabak, V., "Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC," Construction and Building Materials, Vol. 21, Issue 6, 2007, pp. 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025
  8. Lee, H. H. and Lee, H. J., "Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume Fraction," Journal of the Korea Concrete Institute, Vol. 16, No. 6, 2004, pp. 759-766. https://doi.org/10.4334/JKCI.2004.16.6.759
  9. Kim, M. H., Kim, J. M., and Nam, S. I., "An Experimental Study on the Development and Application of Steel Fiber Reinforced Concrete," Journal of the Korea Concrete Institute, Vol. 6, No. 1, 1994, pp. 142-151.
  10. Park, S. B. and Lee, B. C., "Mechanical Properties of Steel Fiber Reinforced Concrete Using Waste Glass," Journal of the Korea Concrete Institute, Vol. 14, No. 6, 2002, pp. 1032-1039. https://doi.org/10.4334/JKCI.2002.14.6.1032
  11. Chang, D. L., Kwak, J. H., and Chai, W. K., "An Experimental Study on the Fracture Behavior of Steel Fiber Reinforced Concrete Structures," Journal of the Korean Society of Civil Engineers, Vol. 11, No. 3, 1991, pp. 19-27.
  12. Shah, S. P. and Rangan, V. B., "Fiber Reinforced Concrete Properties," Journal of American Concrete Institute, Vol. 68, 1971, pp. 126-135.
  13. Mangat, P. S., "Tensile Strength of Steel Fiber Reinforced Concrete," Cement and Concrete Research, Vol. 6, Issue 2, 1976, pp. 245-252. https://doi.org/10.1016/0008-8846(76)90122-8
  14. Jianming G., Wei S., and Keiji M., "Mechanical Properties of Steel Fiber-Reinforced, High-Strength, Lightweight Concrete," Cement and Concrete Composites, Vol. 19, Issue 4, 1997, pp. 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1
  15. Hannant, D. J., Fiber Cements and Fibre Concrete, John Wiley and Sons Ltd., Chichester, UK, 1978, 219 pp.
  16. Naaman, A. E., Fisher, G., and Krstulovic-Opera, N., "Measurement of Tensile Properties of Fiber Reinforced Concrete: Draft Submitted to ACI Committee 544," High Performance Fiber Reinforced Cement Composites (HPFRCC5), Mainz, Germany, 2007, pp. 3-9.
  17. Stähli, P. and Van Mier, J. G. M., "Three-Fibre Type Hybrid- Fibre Concrete," 5th International Symposium on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS), Colorado, 2004, pp. 1105-1112.
  18. Chanvillard, G. and Rigaud, S., "Complete Characterisation of Tensile Properties of Ductal UHPFRC according to the French Recommendations," Proceeding of the 4th International RILEM Workshop-High Performance Fiber Reinforced Cement Composites (HPFRCC4), Ann Arbor, USA, 2003, pp. 21-34.
  19. Markovi, I., "High-Performance Hybrid-Fibre Concrete- Development and Utilization," Doctorial Thesis, Universiteit van Belgrado, Servi, DUP Science, The Netherlands, 2006, pp. 90-92.
  20. Habel, K. and Gauvreau, P., "Response of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to Impact and Static Loading," Cement and Concrete Composites, Vol. 30, No. 10, 2008, pp. 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001
  21. Naaman, A. E., "A Statistical Theory of Strength for Fiber Reinforced Concrete," Ph. D. Thesis, Massacusetts Institute of Technology, USA, 1972, 196 pp.
  22. Swamy, R. N., Mangat, P. S., and Rao, C. V. S. K., "The Mechanics of Fiber Reinforcement of Cement Matrices," An International Symposium: Fiber Reinforced Concrete, American Concrete Institute, Detroit, USA, 1974, pp. 1-28.
  23. Mai, Y. M., "Strength and Fracture Properties of Asbestos- Cement Mortar Composites," Journal of Material Science, Vol. 14, Issue 9, 1979, pp. 2091-2102. https://doi.org/10.1007/BF00688413
  24. Naaman, A. E., "High Performance Fiber Reinforced Cement Composites," Proceeding of the IABSE Symposium on Concrete Structures for the Future, Paris, France, 1987, pp. 371- 376.
  25. Laws, V., "On the Mixture Rule for Strength of Fibre Rinforced Cements," Journal of Material Science Letters, Vol. 2, Issue 9, 1983, pp. 527-572. https://doi.org/10.1007/BF00721474
  26. Park, S. H., Kim, D. J., Ryu, G. S., and Koh K. T., "Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete," Cement and Concrete Composites, Vol. 34, Issue 2, 2012, pp. 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009

피인용 문헌

  1. Performance of Fresh and Hardened Ultra High Performance Concrete without Heat Treatment vol.26, pp.1, 2014, https://doi.org/10.4334/JKCI.2014.26.1.023
  2. Compressive Behavior of Hybrid Steel Fiber Reinforced Ultra-High Performance Concrete vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.213
  3. Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers vol.28, pp.2, 2016, https://doi.org/10.4334/JKCI.2016.28.2.223