The Anti-Inflammatory Effects of Phytochemicals by the Modulation of Innate Immunity

  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2012.01.26
  • Accepted : 2012.06.07
  • Published : 2012.09.30

Abstract

Toll-like receptors (TLRs) induce innate immune responses that are essential for host defense against invading microbial pathogens. In general, TLRs have two major downstream signaling pathways; myeloid differential factor 88 (MyD88) and Toll/IL-1R domain-containing adaptor inducing IFN-${\beta}$ (TRIF) leading to the activation of NF-${\kappa}B$ and IRF3. Numerous studies demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit NF-${\kappa}B$ activation induced by pro-inflammatory stimuli including lipopolysaccharide and tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$). However, the direct molecular targets for such anti-inflammatory phytochemicals are not fully identified. In this paper, we will discuss about the molecular targets of phytochemicals in TLRs signaling pathways. These results present a novel anti-inflammatory mechanism of phytochemicals in TLRs signaling.

Keywords

References

  1. Afzal M, Al-Hadidi D, Menon M, Pesek J, Dhami MS. Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact. 2001. 18: 159-190.
  2. Ahn SI, Lee JK, Youn HS. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol. Mol Cells. 2009. 27: 211-215. https://doi.org/10.1007/s10059-009-0026-y
  3. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006. 124: 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  4. Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum. 2001. 44: 2531-2538. https://doi.org/10.1002/1529-0131(200111)44:11<2531::AID-ART433>3.0.CO;2-J
  5. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994. 12: 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
  6. Barthelman M, Bair WB 3rd, Stickland KK, Chen W, Timmermann BN, Valcic S, Dong Z, Bowden GT. (-)-Epigallocatechin-3-gallate inhibition of ultraviolet B-induced AP-1 activity. Carcinogenesis. 1998. 19: 2201-2204. https://doi.org/10.1093/carcin/19.12.2201
  7. Bhat KP, Pezzuto JM. Cancer chemopreventive activity of resveratrol. Ann N Y Acad Sci. 2002. 957: 210-229. https://doi.org/10.1111/j.1749-6632.2002.tb02918.x
  8. Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun. 1995. 206: 533-540. https://doi.org/10.1006/bbrc.1995.1076
  9. Chan MM, Fong D, Ho CT, Huang HI. Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem Pharmacol. 1997. 54: 1281-1286. https://doi.org/10.1016/S0006-2952(97)00504-2
  10. Chan MM, Mattiacci JA, Hwang HS, Shah A, Fong D. Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem Pharmacol. 2000. 60: 1539-1548. https://doi.org/10.1016/S0006-2952(00)00471-8
  11. Chang CP, Chang JY, Wang FY, Chang JG. The effect of Chinese medicinal herb Zingiberis rhizoma extract on cytokine secretion by human peripheral blood mononuclear cells. J Ethnopharmacol. 1995. 48: 13-19. https://doi.org/10.1016/0378-8741(95)01275-I
  12. Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis. 2006. 12: 1152-1161. https://doi.org/10.1097/01.mib.0000235830.94057.c6
  13. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008. 269: 291-304. https://doi.org/10.1016/j.canlet.2008.04.018
  14. Deng R. Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovasc Drug Rev. 2007. 25: 375-390.
  15. Deng R, Yang D, Radke A, Yang J, Yan B. The hypolipidemic agent guggulsterone regulates the expression of human bile salt export pump: dominance of transactivation over farsenoid X receptor-mediated antagonism. J Pharmacol Exp Ther. 2007. 320: 1153-1162.
  16. Fintelmann V. Modern phytotherapy and its uses in gastrointestinal conditions. Planta Med. 1991. 57: S48-52. https://doi.org/10.1055/s-2006-960229
  17. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003a. 4: 491-496.
  18. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med. 2003b. 198: 1043-1055. https://doi.org/10.1084/jem.20031023
  19. Fujiki H. Green tea: Health benefits as cancer preventive for humans. Chem Rec. 2005. 5: 119-132. https://doi.org/10.1002/tcr.20039
  20. Fukai T, Satoh K, Nomura T, Sakagami H. Preliminary evaluation of antinephritis and radical scavenging activities of glabridin from Glycyrrhiza glabra. Fitoterapia. 2003. 74: 624-629. https://doi.org/10.1016/S0367-326X(03)00164-3
  21. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002. 109 Suppl: S81-96.
  22. Gujral ML, Sareen K, Tangri KK, Amma MK, Roy AK. Antiarthritic and anti-inflammatory activity of gum guggul (Balsamodendron mukul Hook). Indian J Physiol Pharmacol. 1960. 4: 267-273.
  23. Haggag EG, Abou-Moustafa MA, Boucher W, Theoharides TC. The effect of a herbal water-extract on histamine release from mast cells and on allergic asthma. J Herb Pharmacother. 2003. 3: 41-54. https://doi.org/10.1080/J157v03n04_03
  24. Hain R, Bieseler B, Kindl H, Schroder G, Stocker R. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol. 1990. 15: 325-335. https://doi.org/10.1007/BF00036918
  25. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature. 1993. 361: 153-156. https://doi.org/10.1038/361153a0
  26. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 2001. 276: 32008-32015. https://doi.org/10.1074/jbc.M104794200
  27. Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol. 2005. 18: 1917-1926. https://doi.org/10.1021/tx0502138
  28. Hultmark D. Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun. 1994. 199: 144-146. https://doi.org/10.1006/bbrc.1994.1206
  29. Ikeda I, Tsuda K, Suzuki Y, Kobayashi M, Unno T, Tomoyori H, Goto H, Kawata Y, Imaizumi K, Nozawa A, Kakuda T. Tea catechins with a galloyl moiety suppress postprandial hyper-triacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J Nutr. 2005. 135: 155-159.
  30. Ippoushi K, Azuma K, Ito H, Horie H, Higashio H. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 2003. 73: 3427-3437. https://doi.org/10.1016/j.lfs.2003.06.022
  31. Janeway CA. Autoimmune disease: immunotherapy by peptides? Nature. 1989. 341: 482-483. https://doi.org/10.1038/341482a0
  32. Jayaprakasha GK, Rao LJ. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit Rev Food Sci Nutr. 2011. 51: 547-562. https://doi.org/10.1080/10408391003699550
  33. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol. 1999. 163: 3474-3483.
  34. Kakegawa H, Matsumoto H, Satoh T. Inhibitory effects of some natural products on the activation of hyaluronidase and their anti-allergic actions. Chem Pharm Bull (Tokyo). 1992. 40: 1439-1442. https://doi.org/10.1248/cpb.40.1439
  35. Kamei J, Saitoh A, Asano T, Nakamura R, Ichiki H, Iiduka A, Kubo M. Pharmacokinetic and pharmacodynamic profiles of the antitussive principles of Glycyrrhizae radix (licorice), a main component of the Kampo preparation Bakumondo-to (Mai-men-dong-tang). Eur J Pharmacol. 2005. 507: 163-168. https://doi.org/10.1016/j.ejphar.2004.11.042
  36. Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, Kim SS. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci. 2004. 94: 325-328. https://doi.org/10.1254/jphs.94.325
  37. Kim JY, Park SJ, Yun KJ, Cho YW, Park HJ, Lee KT. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages. Eur J Pharmacol. 2008. 584: 175-184. https://doi.org/10.1016/j.ejphar.2008.01.032
  38. Kiuchi F, Iwakami S, Shibuya M, Hanaoka F, Sankawa U. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem Pharm Bull (Tokyo). 1992. 40: 387-391. https://doi.org/10.1248/cpb.40.387
  39. Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox'? Eur J Endocrinol. 1998. 138: 619-620. https://doi.org/10.1530/eje.0.1380619
  40. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009. 388: 621-625. https://doi.org/10.1016/j.bbrc.2009.08.062
  41. Kumar S, Sharma A, Madan B, Singhal V, Ghosh B. Isoliquiritigenin inhibits IkappaB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochem Pharmacol. 2007. 73: 1602-1612. https://doi.org/10.1016/j.bcp.2007.01.015
  42. Lenardo MJ, Fan CM, Maniatis T, Baltimore D. The involvement of NF-kappa B in beta-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell. 1989. 57: 287-294. https://doi.org/10.1016/0092-8674(89)90966-5
  43. Lin YL, Lin JK. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol. 1997. 52: 465-472.
  44. Liu YC, Hsieh CW, Weng YC, Chuang SH, Hsieh CY, Wung BS. Sulforaphane inhibition of monocyte adhesion via the suppression of ICAM-1 and NF-kappaB is dependent upon glutathione depletion in endothelial cells. Vascul Pharmacol. 2008. 48: 54-61. https://doi.org/10.1016/j.vph.2007.11.006
  45. Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol. 2000. 164: 6509-6519.
  46. Martinez J, Moreno JJ. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem Pharmacol. 2000. 59: 865-870. https://doi.org/10.1016/S0006-2952(99)00380-9
  47. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007. 449: 819-826. https://doi.org/10.1038/nature06246
  48. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997. 388: 394-397. https://doi.org/10.1038/41131
  49. Metz N, Lobstein A, Schneider Y, Gosse F, Schleiffer R, Anton R, Raul F. Suppression of azoxymethane-induced preneoplastic lesions and inhibition of cyclooxygenase-2 activity in the colonic mucosa of rats drinking a crude green tea extract. Nutr Cancer. 2000. 38: 60-64. https://doi.org/10.1207/S15327914NC381_9
  50. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. RIP1 is an essential mediator of Tolllike receptor 3-induced NF-kappa B activation. Nat Immunol. 2004. 5: 503-507. https://doi.org/10.1038/ni1061
  51. Michie CA, Cooper E. Frankincense and myrrh as remedies in children. J R Soc Med. 1991. 84: 602-605.
  52. Murakami A, Matsumoto K, Koshimizu K, Ohigashi H. Effects of selected food factors with chemopreventive properties on combined lipopolysaccharide- and interferon-gamma-induced IkappaB degradation in RAW264.7 macrophages. Cancer Lett. 2003. 195: 17-25. https://doi.org/10.1016/S0304-3835(03)00058-2
  53. Nakata R, Takahashi S, Inoue H. Recent advances in the study on resveratrol. Biol Pharm Bull. 2012. 35: 273-279. https://doi.org/10.1248/bpb.35.273
  54. Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med. 2006. 34: 511-522. https://doi.org/10.1142/S0192415X06004041
  55. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA. 1989. 86: 2336-2340. https://doi.org/10.1073/pnas.86.7.2336
  56. Owsley E, Chiang JY. Guggulsterone antagonizes farnesoid X receptor induction of bile salt export pump but activates pregnane X receptor to inhibit cholesterol 7alpha-hydroxylase gene. Biochem Biophys Res Commun. 2003. 304: 191-195. https://doi.org/10.1016/S0006-291X(03)00551-5
  57. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999. 18: 6853-6866. https://doi.org/10.1038/sj.onc.1203239
  58. Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other poly+phenols through down-regulation of IkappaB kinase activity in macrophages. Biochem Pharmacol. 2000a. 59: 357-367. https://doi.org/10.1016/S0006-2952(99)00335-4
  59. Pan MH, Lin-Shiau SY, Lin JK. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol. 2000b. 60: 1665-1676. https://doi.org/10.1016/S0006-2952(00)00489-5
  60. Park SJ, Lee MY, Son BS, Youn HS. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci Biotechnol Biochem. 2009a. 73: 1474-1478. https://doi.org/10.1271/bbb.80738
  61. Park SJ, Song HY, Youn HS. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by isoliquiritigenin in RAW264.7 macrophages. Mol Cells. 2009b. 28: 365-368. https://doi.org/10.1007/s10059-009-0130-z
  62. Park SJ, Youn HS. Suppression of homodimerization of toll-like receptor 4 by isoliquiritigenin. Phytochemistry. 2010. 71: 1736-1740. https://doi.org/10.1016/j.phytochem.2010.07.008
  63. Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J Nat Prod. 2007. 70: 143-146. https://doi.org/10.1021/np060263s
  64. Pervaiz S. Resveratrol: from grapevines to mammalian biology. Faseb J. 2003. 17: 1975-1985. https://doi.org/10.1096/fj.03-0168rev
  65. Saitoh S, Akashi S, Yamada T, Tanimura N, Kobayashi M, Konno K, Matsumoto F, Fukase K, Kusumoto S, Nagai Y, Kusumoto Y, Kosugi A, Miyake K. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4(TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int Immunol. 2004. 16: 961-969. https://doi.org/10.1093/intimm/dxh097
  66. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptorassociated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol. 2003. 171: 4304-4310.
  67. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005. 41: 1955-1968. https://doi.org/10.1016/j.ejca.2005.05.009
  68. Shishodia S, Aggarwal BB. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem. 2004. 279: 47148-47158. https://doi.org/10.1074/jbc.M408093200
  69. Soriani M, Rice-Evans C, Tyrrell RM. Modulation of the UVA activation of haem oxygenase, collagenase and cyclooxy genase gene expression by epigallocatechin in human skin cells. FEBS Lett. 1998. 439: 253-257. https://doi.org/10.1016/S0014-5793(98)01387-8
  70. Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, Pezzuto JM, Dannenberg AJ. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem. 1998. 273: 21875-21882. https://doi.org/10.1074/jbc.273.34.21875
  71. Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol. 2002. 40: 1091-1097. https://doi.org/10.1016/S0278-6915(02)00037-6
  72. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003. 3: 768-780. https://doi.org/10.1038/nrc1189
  73. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005. 17: 1-14.
  74. Tao X, Xu Y, Zheng Y, Beg AA, Tong L. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem Biophys Res Commun. 2002. 299: 216-221. https://doi.org/10.1016/S0006-291X(02)02581-0
  75. Tawata M, Aida K, Noguchi T, Ozaki Y, Kume S, Sasaki H, Chin M, Onaya T. Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur J Pharmacol. 1992. 212: 87-92. https://doi.org/10.1016/0014-2999(92)90076-G
  76. Thomson M, Al-Qattan KK, Al-Sawan SM, Alnaqeeb MA, Khan I, Ali M. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prosta-glandins Leukot Essent Fatty Acids. 2002. 67: 475-478. https://doi.org/10.1054/plef.2002.0441
  77. Tjendraputra E, Tran VH, Liu-Brennan D, Roufogalis BD, Duke CC. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg Chem. 2001. 29: 156-163. https://doi.org/10.1006/bioo.2001.1208
  78. Tsai SH, Lin-Shiau SY, Lin JK. Suppression of nitric oxide synthase and the down-regulation of the activation of NF-kappaB in macrophages by resveratrol. Br J Pharmacol. 1999. 126: 673-680. https://doi.org/10.1038/sj.bjp.0702357
  79. Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med (Berl). 2006. 84: 712-725. https://doi.org/10.1007/s00109-006-0084-y
  80. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002. 296: 1703-1706. https://doi.org/10.1126/science.1072891
  81. Wadsworth TL, Koop DR. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem Pharmacol. 1999. 57: 941-949. https://doi.org/10.1016/S0006-2952(99)00002-7
  82. Wang X, Song KS, Guo QX, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol. 2003. 66: 2039-2047. https://doi.org/10.1016/S0006-2952(03)00585-9
  83. Wheeler DS, Catravas JD, Odoms K, Denenberg A, Malhotra V, Wong HR. Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1 beta-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J Nutr. 2004. 134: 1039-1044.
  84. Wu J, Xia C, Meier J, Li S, Hu X, Lala DS. The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol. 2002. 16: 1590-1597. https://doi.org/10.1210/me.16.7.1590
  85. Xu C, Shen G, Chen C, Gelinas C, Kong AN. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through I kappa B alpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 2005. 24: 4486-4495. https://doi.org/10.1038/sj.onc.1208656
  86. Yang F, de Villiers WJ, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factorproduction and lethality in a murine model. J Nutr. 1998. 128: 2334-2340.
  87. Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW. The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol. 2001. 60: 528-533.
  88. Yang TT, Koo MW. Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation. Atherosclerosis. 2000. 148: 67-73. https://doi.org/10.1016/S0021-9150(99)00239-7
  89. Yokota T, Nishio H, Kubota Y, Mizoguchi M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 1998. 11: 355-361. https://doi.org/10.1111/j.1600-0749.1998.tb00494.x
  90. Youn HS, Ahn SI, Lee BY. Guggulsterone suppresses the activation of transcription factor IRF3 induced by TLR3 or TLR4 agonists. Int Immunopharmacol. 2009. 9: 108-112. https://doi.org/10.1016/j.intimp.2008.10.012
  91. Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, Joung SM, Seo JA, Lim KM, Kwak MK, Hwang DH, Lee JY. Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. J Immunol. 2010. 184: 411-419. https://doi.org/10.4049/jimmunol.0803988
  92. Youn HS, Lee JK, Choi YJ, Saitoh SI, Miyake K, Hwang DH, Lee JY. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol. 2008. 75: 494-502. https://doi.org/10.1016/j.bcp.2007.08.033
  93. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol. 2005. 175: 3339-3346.
  94. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin 3-gallate, a polyphenol component of green tea. Biochem Pharmacol. 2006a. 72: 850-859. https://doi.org/10.1016/j.bcp.2006.06.021
  95. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol. 2006b. 72: 62-69. https://doi.org/10.1016/j.bcp.2006.03.022
  96. Yu SM, Kuo SC. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br J Pharmacol. 1995. 114: 1587-1594. https://doi.org/10.1111/j.1476-5381.1995.tb14943.x
  97. Zhao L, Lee JY, Hwang DH. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals. Nutr Rev. 2011. 69: 310-320. https://doi.org/10.1111/j.1753-4887.2011.00394.x
  98. Zhou S, Koh HL, Gao Y, Gong ZY, Lee EJ. Herbal bioactivation: the good, the bad and the ugly. Life Sci. 2004. 74: 935-968. https://doi.org/10.1016/j.lfs.2003.09.035
  99. Zingarelli B, Sheehan M, Wong HR. Nuclear factor-kappaB as a therapeutic target in critical care medicine. Crit Care Med. 2003. 31: S105-111. https://doi.org/10.1097/00003246-200301001-00015