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Abstract

First, we prove a number of results about interval-valued fuzzy groups involving the notions of interval-valued fuzzy

cosets and interval-valued fuzzy normal subgroups which are analogs of important results from group theory. Also,

we introduce analogs of some group-theoretic concepts such as characteristic subgroup, normalizer and abelian groups.

Secondly, we prove that if A is an interval-valued fuzzy subgroup of a group G such that the index of A is the smallest

prime dividing the order of G, then A is an interval-valued fuzzy normal subgroup. Finally, we show that there is a

one-to-one correspondence the interval-valued fuzzy cosets of an interval-valued fuzzy subgroup A of a group G and the

cosets of a certain subgroup H of G.

Key Words: interval-valued fuzzy normal subgroup, interval-valued fuzzy coset, interval-valued fuzzy characteristic

fuzzy subgroup, normalizer, abelian group.

1. Introduction

The concept of a fuzzy set was introduced by Zadeh[9],

and in 1965, he[10] introduced the notion of interval-

valued fuzzy set as a generalization of fuzzy sets. After

that time, Mondal and Samanta[8], and choi et al.[3] ap-

plied it to topology. Also, several researchers [1,2, 4-7]

applied one to algebra.

The present paper is a sequel to [4]. We obtain a num-

ber of further analogs of the properties of groups, thereby

enriching the theory of interval-valued fuzzy groups and,

in particular, corroborating the concept of interval-valued

fuzzy normal subgroups and interval-valued fuzzy cosets

introduced in [4,5]. Moreover, we obtain an analog of the
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following standard result from group theory that if θ is an

automorphism of a group G which leaves invariant some

normal subgroup N , then θ induces an automorphism of

the quotient group G/N .

Some variations of this result are also considered, for

which we obtain analogs for interval-valued fuzzy groups.

Also we show that there is a natural one-to-one corre-

spondence between the interval-valued fuzzy cosets of an

interval-valued fuzzy subgroup A of a group G and the

cosets of a subgroup GA of G defined by GA = {g ∈ G :

A(g) = A(e)}, where e denotes, as usual, the identity ele-

ment of the group G. Our analysis illustrates that the sub-

group GA defined above plays a significant role in inves-

tigating the structure of the corresponding interval-valued

fuzzy subgroup.

2. Preliminaries

In this section, we list some basic concepts and well-
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known results which are needed in the later sections.

Let D(I) be the set of all closed subintervals of the

unit interval I = [0, 1]. The elements of D(I) are gen-

erally denoted by capital letters M,N, · · ·, and note that

M = [ML,MU ], where ML and MU are the lower and

the upper end points respectively. Especially, we denoted ,

0 = [0, 0], 1 = [1, 1], and a=[a, a] for every a ∈ (0, 1). We

also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU =

NU ),

(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ ML ≤ NL,MU ≤
NU ).

For every M ∈ D(I), the complement of M , denoted by

M c, is defined by M c = 1 −M = [1 −MU , 1 −ML]

(See [8]).

Definition 2.1 [8, 10]. A mappingA : X → D(I) is called

an interval -valued fuzzy set (in short, IVS) in X , denoted

by A = [AL, AU ], if AL, AU ∈ IX such that AL ≤ AU ,

i.e., AL(x) ≤ AU (x) for each x ∈ X , where AL(x)[resp.

AU (x)] is called the lower [resp. upper ] end point of x

to A. For any [a, b] ∈ D(I), the interval-valued fuzzy

set A in X defined by A(x) = [AL(x), AU (x)] = [a, b]

for each x ∈ X is denoted by ˜[a, b] and if a = b, then

the IVS ˜[a, b] is denoted by simply ã. In particular, 0̃ and

1̃ denote the interval -valued fuzzy empty set and the

interval -valued fuzzy whole set in X , respectively.

We will denote the set of all IVSs in X as D(I)X . It is

clear that set A = [AL, AU ] ∈ D(I)X for each A ∈ IX .

Definition 2.2 [8]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .

(ii) A = B iff A ⊂ B and B ⊂ A.

(iii) Ac = [1−AU , 1−AL].

(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result2.A[8,Theorem1]. Let A,B,C ∈ D(I)X and

let {Aα}α∈Γ ⊂ D(I)X . Then

(a) 0̃ ⊂ A ⊂ 1̃.

(b) A ∪B = B ∪A , A ∩B = B ∩A.

(c) A ∪ (B ∪ C) = (A ∪ B) ∪ C , A ∩ (B ∩ C) =

(A ∩B) ∩ C.

(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.

(e) A ∩ (
⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.

(h) (Ac)c = A.

(i) (
⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

Definition 2.3 [8]. Let f : X → Y be a mapping, let

A = [AL, AU ] ∈ D(I)X and let B = [BL, BU ] ∈ D(I)Y .

Then

(a) the image of A under f , denoted by f(A), is an IVS

in Y defined as follows: For each y ∈ Y ,

f(AL)(y) =


∨

y=f(x)

AL(x), if f−1(y) 6= ∅;

0, otherwise.

and

f(AU )(y) =


∨

y=f(x)

AU (x), if f−1(y) 6= ∅;

0, otherwise.

(b) the preimage of B under f , denoted by f−1(B), is

an IVS in Y defined as follows: For each y ∈ Y ,

f−1(BL)(y) = (BL ◦ f)(x) = BL(f(x))

and

f−1(BU )(y) = (BU ◦ f)(x) = BU (f(x)).

It can be easily seen that f(A) = [f(AL), f(AU )] and

f−1(B) = [f−1(BL), f−1(BU )].

Result 2.B [8, Theorem 2]. Let f : X → Y be a mapping

and g : Y → Z be a mapping. Then

(a) f−1(Bc) = (f−1(B))c , ∀B ∈ D(I)Y .
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(b) [f(A)]c ⊂ f(Ac) , ∀A ∈ D(I)Y .

(c) B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2), where B1, B2 ∈
D(I)Y .

(d) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2), where A1, A2 ∈
D(I)X .

(e) f(f−1(B)) ⊂ B, ∀B ∈ D(I)Y .

(f) A ⊂ f(f−1(A)), ∀A ∈ D(I)Y .

(g) (g ◦ f)−1(C) = f−1(g−1(C)), ∀C ∈ D(I)Z .

(h) f−1(
⋃
α∈Γ

Bα) =
⋃
α∈Γ

f−1Bα, where {Bα}α∈Γ ∈

D(I)Y .

(h) f−1(
⋂
α∈Γ

Bα) =
⋂
α∈Γ

f−1Bα, where {Bα}α∈Γ ∈

D(I)Y .

3. Interval-valued fuzzy subgroups

Definition 3.1 [1, 6]. Let G be a group with the identity

e and let A ∈ D(I)G. Then A is called an interval -

valued fuzzy subgroup(in short, IVG) of G if

(i) AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧
AU (y) for any x, y ∈ G.

(ii) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x) for

each x ∈ G.

We will denote the set of all IVGs of G as IVG(G).

Result 3.A [1, Proposition 3.1]. Let G be a group with

the identity e and let A ∈ IVG(G). Then A(x−1) = A(x)

and AL(x) ≤ AL(e), AU (x) ≤ AU (e) for each x ∈ G.

Result 3.B [6, Proposition 4.6]. If A ∈ IVG(G), then

GA = {x ∈ G : A(x) = A(e)} is a subgroup of G.

Result 3.C [6, Proposition 4.3]. Let {Aα}α∈Γ ⊂ IVG(G).

Then
⋂
α∈ΓAα ∈ IVG(G).

Definition 3.2 [6]. Let G be a group with the identity

e and let A ∈ IVG(G). Then A is called an interval -

valued fuzzy normal subgroup(in short, IVNG) of G if

A(xy) = A(yx) for any x, y ∈ G.

We will denote the set of all IVNGs of G as IVNG(G).

Definition 3.3. Let A be an IVG of a group G and let

θ : G → G be a mapping. We define a mapping Aθ =

[(Aθ)L, (Aθ)U ] : G→ D(I) as follows : For each g ∈ G,

Aθ(g) = A(θ(g)).

For a group G, a subgroup K is called a

characteristic subgroup if θ(K) = K for every au-

tomorphism θ of G. We now define an analog.

Definition 3.4. Let A be an IVG of a group G. Then A is

called an interval -valued fuzzy characteristic subgroup

of G if Aθ = A for every automorphism θ of G.

Proposition 3.5. Let G be a group, let A ∈ D(I)G and let

θ : G→ G be a mapping.

(a) If A ∈ IVG(G) and θ is a homomorphism, then Aθ ∈
IVG(G).

(b) If A is an interval-valued fuzzy characteristic

subgroup of G, then A ∈ IVNG(G).

Proof. (a) Let x, y ∈ G. Then

Aθ(xy) = A(θ(xy))

= A(θ(x)θ(y)). [Since θ is a homomorphism]

Since A ∈ IVG(G),

AL(θ(x)θ(y)) ≥ AL(θ(x)) ∧AL(θ(y))

= (Aθ)L(x) ∧ (Aθ)L(y).

Similarly, we have that

AU (θ(x)θ(y)) ≥ (Aθ)U (x) ∧ (Aθ)U (y).

Thus

(Aθ)L(xy) ≥ (Aθ)L(x) ∧ (Aθ)L(y)

and

(Aθ)U (xy) ≥ (Aθ)U (x) ∧ (Aθ)U (y).

On the other hand,

Aθ(x−1) = A(θ(x−1))

= A(θ(x)−1) [Since θ is a homomorphism]

= A(θ(x)) [By Result 3.A]

= Aθ(x).
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Hence Aθ ∈ IVG(G).

(b) Let θ : G → G be the automorphism of G defined

by θ(g) = x−1gx for each g ∈ G. Then clearly it is

standard result that θ is an automorphism of G, called the

inner automorphism induced by x. Let x, y ∈ G. Since

A is interval-valued fuzzy characteristic, Aθ = A. Thus

A(xy) = Aθ(xy) = A(θ(xy))

= A(x−1(xy)x) [By the definition of θ]

= A(yx).

Hence A ∈ IVNG(G). This completes the proof.

Remark 3.6. Proposition 3.5(b) is an analog of the result

that a characteristic subgroup of a group is normal.

Now we obtain analogs of the concepts of conjugacy,

normalizer regarding a group, and their properties.

Definition 3.7. Let G be a group and let A1, A2 ∈
IVG(G). Then we say that A1 is conjugate to A2 if there

exists an x ∈ G such that A1(g) = A2(x−1gx) for each

g ∈ G.

It is easy to show that the relation of conjugacy is

an equivalence relation on IVG(G). Hence IVG(G) is

a union of pairwise disjoint classes of interval-valued

fuzzy subgroups each consisting of interval-valued fuzzy

subgroups which are equivalent to one another. Now we

shall obtain an expression giving the number of distinct

conjugates of an interval-valued fuzzy subgroups.

Notation. LetG be a group, letA ∈ IVG(G) and let g ∈ G.

We define a mapping Ag = [(Ag)L, (Ag)U ] : G → D(I)

as follows : for each u ∈ G, Ag(u) = A(g−1ug), i.e.,

(Ag)L(u) = AL(g−1ug) and (Ag)U (u) = AU (g−1ug).

From Proposition 3.5(a), it is clear that Ag ∈ IVG(G).

Definition 3.8. Let A be an IVG of a group G. Then the

set N(A) = {g ∈ G : Ag = A} is called the normalizer

of A.

Proposition 3.9. Let A be an IVG of a group G. Then

(a) N(A) is a subgroup of G.

(b) A ∈ IVNG(G) id and only if N(A) = G.

(c) If G is a finite group, then the number of distinct

conjugates of A is equal to the index of N(A) in G.

Proof. (a) Let g, h ∈ N(A) and let u ∈ G. ThenAgh(u) =

A((gh)−1u(gh)) = A(h−1(g−1ug)h) = Ah(g−1ug) =

(Ah)g(u). Thus Agh = (Ag)h = Ah = A. So gh ∈
N(A). Let x ∈ N(A) and let y = x−1. Let u ∈ G. Then

Ay(u) = A(y−1uy) = A(xux−1) = A((x−1u−1x)−1)

= A(x−1u−1x) [By Result 3.A]

= Ax(u−1) [By the definition of Ax]

= A(u−1) [Since Ax = A]

= A(u). [By Result 3.A]

Thus Ay = A. So y = x−1 ∈ N(A). Hence N(A) is a

subgroup of G.

(b)(⇒): Suppose A ∈ IVNG(G) and let g ∈ G. Let

u ∈ G. Then

Ag(u) = A(g−1ug) = A((g−1u)g)

= A(g(g−1u)) [Since A ∈ IV NG(G)]

= A(u).

Thus Ag = A. So g ∈ N(A), i.e., G ⊂ N(A). Hence

N(A) = G.

(⇐): Suppose N(A) = G and let x, y ∈ G. Then

A(xy) = A(xyxx−1) = A(x(yx)x−1)

= Ax
−1

(yx) [By the definition of Ax
−1

]

= A(yx). [By the hypothesis]

Hence A ∈ IVNG(G).

(c) Consider the decomposition ofG as a union of cosets

of N(A),

G = x1N(A) ∪ x2N(A) ∪ · · · ∪ xkN(A), (3.1)

where k is the number of distinct cosets, i.e., the index of

N(A) in G. Let x ∈ N(A) and choose i such that 1 ≤ i ≤
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k. Let g ∈ G. Then

Axix(g) = A((xix)−1g(xix))

= A(x−1(x−1
i gxi)x)

= Ax(x−1
i gxi)

= A(x−1
i gxi) [Since x ∈ N(A)]

= Axi(g).

Thus Axix = Axi for each x ∈ N(A) and 1 ≤ i ≤ k. So

any two elements of G which lie in the same coset xiN(A)

give rise to the same conjugate Axi of A. Now we show

that two distinct cosets give two distinct conjugates of A.

Assume that Axi = Axj , where i 6= j and 1 ≤ i ≤ k,

1 ≤ j ≤ k. Let g ∈ G. Then

Axi(g) = Axj (g), i.e., A(x−1
i gxi) = A(x−1

j gxj). (3.2)

Let h ∈ G such that g = xjhx
−1
j . Then, by (3.2),

A(x−1
i xjhx

−1
j xi) = A(x−1

j xjhx
−1
j xj)

⇒A((x−1
i xj)h(x−1

j xi)) = A(h),

i.e., A((x−1
j xi)

−1h(x−1
j xi)) = A(h)

⇒Ax
−1
j xi(h) = A(h), i.e., Ax

−1
j xi = A.

Thus x−1
j xi ∈ N(A). So xiN(A) = xjN(A). Since (3.1)

represent a partition of G into pairwise disjoint cosets and

i 6= j, this is not possible. Hence the number of distinct

conjugates of A is equal to the index of N(A) in G. This

completes the proof.

Remark 3.10. Proposition 3.9(b) illustrates the motivation

behind the term ”normalizer” and it shows the analogy

with the fact that a subgroup H of a group G is normal in

G if and only if the normalizer of H in G is equal to G

itself. And Proposition 3.9(c) is an analog of a basic result

in group theory.

Definition 3.11 [4]. Let A be an IVG of a

group G and let x ∈ G. We define two map-

pings Ax = [AxL, AxU ] : G → D(I) and

xA = [xAL, xAU ] : G → D(I) as follows, respec-

tively : For each g ∈ G, Ax(g) = A(gx−1) and xA(g) =

A(x−1g). Then Ax[resp.xA] is called the interval -

valued fuzzy right[resp.left] coset of G determined by x

and A.

Lemma 3.12. Let A be an IVG of a group G and let K =

{x ∈ G : Ax = Ae},
where e denotes the identity element of G. Then K is a

subgroup of G. Furthermore, GA = K.

Proof. Let k ∈ K and let g ∈ G. Then Ak(g) = Ae(g).

Thus A(gk−1) = A(g). In particular, A(ek−1) = A(e),

i.e., A(k−1) = A(e). Thus k−1 ∈ GA. By Result 3.B, GA
is a subgroup of G. Thus k ∈ GA. So K ⊂ GA. Now let

h ∈ GA. Then

A(h) = A(e). (3.3)

Let g ∈ G. Then Ah(g) = A(gh−1) and Ae(g) = A(g).

Thus

AL(gh−1) ≥ AL(g) ∧AL(h−1)

= AL(g) ∧AL(h) [By Result 3.A]

= AL(g) ∧AL(e) [By (3.3)]

= AL(g). [By Result 3.A]

Similarly, we have that AU (gh−1) ≥ AU (g). Also,

AL(g) = AL(gh−1h) ≥ AL(gh−1) ∧AL(h)

= AL(gh−1) ∧AL(e) [By (3.3)]

= AL(gh−1). [By Result 3.A]

Similarly, we have that AU (g) ≥ AU (gh−1). So

A(gh−1) = A(g), i.e., Ah = Ae, i.e., h ∈ K. Hence

GA ⊂ K. Therefore GA = K. This completes the

proof.

Corollary 3.12 [6, Proposition 5.4]. Let G be a group. If

A ∈ IVNG(G), then GA �G.

Proof. Let g ∈ G and let x ∈ GA. Then

A(g−1xg) = A(gg−1x) [Since A ∈ IVNG(G)]

= A(x)

= A(e). [Since x ∈ GA]

Thus g−1xg ∈ GA. Hence GA �G.
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For a group G, the commutator [x, y] of two elements

x, y in G is defined as [x, y] = x−1y−1xy. If xy = yx,

then obviously [x, y] = e. Thus G is abelian if [x, y] = e

for all x, y ∈ G. This motivates the following definition.

Remark 3.13. A special case of Lemma 3.12 is implicit

in Theorem 2.12 in [4], where it was tacitly assumed that

A is interval-valued fuzzy normal. But, as we see now,

it is not necessarily to assume that A is interval-valued

fuzzy normal, and this fact straightens the proof of the

interval-valued fuzzy Lagrange’s theorem [4, Theorem

4.12].

Definition 3.14. Let A be an IVG of a group G. Then A is

said to be interval-valued fuzzy abelian ifA([x, y]) = A(e)

for any x, y ∈ G.

Result 3.D [4, Theorem 2.12]. Let A ∈ IVG(G). Then

A ∈ IVNG(G) if and only if AL([x, y]) ≥ AL(x) and

AU ([x, y]) ≥ AU (x) for any x, y ∈ G.

Analogous to some well-known properties of abelian

group, we prove.

Theorem 3.15. (a) An interval-valued fuzzy abelian sub-

group of a group is interval-valued fuzzy normal.

(b) Given an interval-valued fuzzy abelian subgroup of

G, there is a normal subgroup N of G such that G/N is

abelian.

Proof. (a) Let A be an interval-valued fuzzy abelian

subgroup of G. Let x, y ∈ G. Then, by Result 3.A,

AL([x, y]) = AL(e) ≥ AL(x) and AU ([x, y]) = AU (e) ≥
AU (x). Hence, by Result 3.D, A ∈ IVNG(G).

(b) Let A be an interval-valued fuzzy abelian subgroup

of G. Then, by (a), A ∈ IVNG(G). Thus, by Corollary

3.12, GA � G. Also, it is easy to see that G′ ⊂ GA,

where G′ denotes the commutator subgroup of G (i.e.,

the subgroup generated by all elements [x, y], x, y ∈ G).

Hence G/GA is abelian.

The following is the immediate result of Definition 3.2

and Result 3.C.

Proposition 3.16. If {Aα}α∈Γ is a family of IVNGs of

a group G, then
⋂
α∈Γ

Aα ∈ IVNG(G). Furthermore, if

A,B ∈ IVNG(G), then A ∩B ∈ IVNG(G).

It is a standard result in group theory that ifG is a group,

H ≤ G,K ≤ G and H � G, then H ∩K �K is normal

in K. Now we derive an analog for interval-valued fuzzy

subgroups.

Proposition 3.17. Let G be a group and let A ∈ IVG(G),

B ∈ IVNG(G). Then A ∩ B is an interval-valued fuzzy

normal subgroup of the group GA.

Proof. It is clear that GA is a subgroup of G by Result

3.B. By Proposition 3.16, A∩B ∈ IVG(G). Thus A∩B ∈
IVG(GA). Let x, y ∈ GA. Since GA is a subgroup of G,

xy ∈ GA and yx ∈ GA. Thus A(xy) = A(yx) = A(e).

Since B ∈ IVNG(G), B(xy) = B(yx). So

(A ∩B)(xy) = [AL(xy) ∧BL(xy), AU (xy) ∧BU (xy)]

= [AL(yx) ∧BL(yx), AU (yx) ∧BU (yx)]

= (A ∩B)(yx).

Hence A ∩B ∈ IVNG(GA).

4. Interval-valued fuzzy cosets

Result 4.A [4, Theorem 2.9]. Let A be an IVG of a group

G. Then the followings are equivalent :

(a) AL(xyx−1) ≥ AL(y) and AU (xyx−1) ≥ AU (y) for

any x, y ∈ G.

(b) A(xyx−1) = A(y) for any x, y ∈ G.

(c) A ∈ IVNG(G).

(d) xA = Ax for each x ∈ G.

(e) xAx−1 = A for each x ∈ G.

Remark 4.1. We shall restrict ourselves in the subse-

quent discussion, without any loss of generality, with
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interval-valued fuzzy right cosets only(corresponding

results for interval-valued fuzzy left cosets could be

obtained without any difficulty). Consequently from

now on we call an interval-valued fuzzy right coset an

interval -valued fuzzy coset and denote it as Ax for each

x ∈ G.

Definition 4.2 [4]. Let A be an IVG of a finite group G.

Then the cardinality |G/A| of G/A is called an index of

A, where G/A denotes the set of all interval-valued fuzzy

cosets of A.

Result 4.B [4, Proposition 3.7]. Let A be an IVNG of a

group G. We define an operation ∗ on G/A as follows :

For any x, y ∈ G, Ax ∗ Ay = Axy. Then (G/A, ∗) is a

group. In this case, G/A is called the interval-valued fuzzy

quotient group by A.

Result 4.C [4, Theorem 4.12]. Let A be an IVG of a finite

group G. Then the index of A divides the order of G.

It is a well-known result in group theory that subgroup

of index 2 is a normal subgroup. We now obtain an analog

of a generalization of this result.

Proposition 4.3. Let A be an IVG of a finite group G

such that the index of A is p, where p is the smallest prime

dividing the order of G. Then A ∈ IVNG(G).

Proof. By Result 3.B, GA is a subgroup of G. Since A

is an IVG of G such that the index of A is p, by Lemma

3.12 and Result 4.C, GA has index p in G, i.e., GA has

p distinct (right) cosets, say, {GAxi : 1 ≤ i ≤ p}.
Now consider the permutation representation of G on the

cosets of GA given by the map π : x → πx−1 , where

πx−1 : GAxi → GAxix
−1, 1 ≤ i ≤ p. Since the in-

dex of GA in G is p, π is an isomorphism of G into the

symmetric group Sp. Furthermore, Kerπ = Core(GA),

where Core(GA) denotes the intersection of all the con-

jugates g−1GAg, g ∈ G. By the fundamental theorem of

homomorphisms of groups and using Lagrange’s theorem,

the order of G/Core(GA) divides p! which is the order of

Sp. Furthermore,

G/Core(GA) ∼= (G/GA)(GA/Core(GA))

and the order of G/GA is p. Thus it follows that the or-

der of GA/Core(GA) divides (p − 1)!. Since the order

of GA divides the order of G, GA = Core(GA); other-

wise we get a contradiction to the fact that p is the small-

est prime dividing the order of G. Since Core(GA) is a

normal subgroup of G, GA is a normal subgroup of G.

Now consider the quotient group G/H . Since the order

of G/GA is p, G/GA is abelian. Let x, y ∈ G. Then

(GAx)(GAy) = (GAy)(GAx). Thus GAxy = GAyx. So

there exists an h ∈ GA such that xy = hyx. Then

AL(xy) = AL(hyx) ≥ AL(h) ∧AL(yx)

= AL(e) ∧AL(yx) = AL(yx).

Similarly, we have that AU (xy) ≥ AU (yx). Also, we

have that AL(yx) ≥ AL(xy) and AU (yx) ≥ AU (xy). So

A(xy) = A(yx) for any x, y ∈ G. Hence A ∈ IVNG(G).

This completes the proof.

The following is the immediate result of Proposition

4.3.

Corollary 4.3. Let A be an IVG of a group G such that the

index of A is 2, then A ∈ IVNG(G).

It is well-known in group theory that θ is a homomor-

phism of a group G into itself whose kernel is N , then θ

induces a homomorphism from G/N into itself. Now we

derive an analog of the following result.

Proposition 4.4. Let A be an IVNG of a group G and

let θ be an homomorphism of G into itself such that

θ(GA) = GA. Then θ induces a homomorphism θ̄ of

the interval-valued fuzzy cosets of A defined as follows :

θ̄(Ax) = Aθ(x) for each x ∈ G.

Proof. Suppose x, y ∈ G such that Ax = Ay. Then

Ax(x) = Ay(x) and Ax(y) = Ay(y). Thus A(e) =

A(xy−1) = A(yx−1). So xy−1, yx−1 ∈ GA. Since
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θ(GA) = GA, θ(xy−1), θ(yx−1) ∈ GA. Then

A(θ(xy−1)) = A(θ(yx−1)) = A(e). (4.1)

Let g ∈ G. Then

(Aθ(x))L(g) = AL(gθ(x)−1)

= AL(gθ(x−1)) [Since θ is a homomorphism]

= AL(gθ(y−1)θ(y)θ(x−1))

≥ AL(gθ(y−1)) ∧AL(θ(y)θ(x−1))

[Since A ∈ IVG(G)]

= AL(gθ(y−1)) ∧AL(θ(yx−1))

[Since θ is a homomorphism]

= (Aθ(y))L(g) ∧AL(e) [By (4.1)]

= (Aθ(y))L(g). [By Result 3.A]

Similarly, we have that (Aθ(x))U (g) ≥ (Aθ(y))U (g).

Also, we have that (Aθ(y))L(g) ≥ (Aθ(x))L(g) and

(Aθ(y))U (g) ≥ (Aθ(x))U (g). Thus Aθ(x) = Aθ(y). So

θ̄ is well-defined. Now let x, y ∈ G. Then

θ̄(Ax ∗Ay) = θ̄(Axy) [By Result 4.B]

= Aθ(xy) [By the definition of θ̄]

= Aθ(x)θ(y) [Since θ is a homomorphism]

= Aθ(x) ∗Aθ(y) [By Result 4.B]

= θ̄(Ax) ∗ θ̄(Ay). [By the definition of θ̄]

Hence θ̄ is a homomorphism. This completes the

proof.

Corollary 4.4-1. In the same hypothesis as in Proposition

4.4, if θ is an automorphism and G is finite, then θ̄ is an

automorphism.

Proof. Since G has finite order, it is easy to see that θ has

finite order. Suppose that θ has order k. Then θk = idG,

where idG denotes the identity mapping. Let x, y ∈ G

such that θ̄(Ax) = θ̄(Ay). Then, by the definition of θ̄,

Aθ(x) = Aθ(y).

Since θk = idG, θk(x) = x and θk(y) = y. Thus Ax =

Aθk(x) = Aθk(y) = Ay.

So θ̄ is injective. Hence θ̄ is an automorphism.

Corollary 4.4-2. In the same hypothesis as in Proposition

4.4, if θ̄ is an automorphism and GA = (e), then θ is an

automorphism.

Proof. Let x, y ∈ G such that θ(x) = θ(y). Then

Aθ(x) = Aθ(y), i.e., θ̄(Ax) = θ̄(Ay). Since θ̄ is injective,

Ax = Ay. Then Ax(y) = Ay(y). Thus A(yx−1) = A(e).

So yx−1 ∈ GA. Since GA = (e), yx−1 = e. Thus x = y.

So θ is injective. Hence θ is an automorphism.

The motivation of the following result stems from the

standard theorem in group theory that if θ is an automor-

phism of G and N is a normal subgroup of G such that

Nθ ⊂ N , then θ induces an automorphism of the quotient

group G/N into itself.

Remark 4.5. In Proposition 4.4, we have assumed A

to be interval-valued fuzzy normal instead of assuming

only that A is an interval-valued fuzzy subgroup. This

has been done to ensure that the law of composition of

interval-valued fuzzy cosets is well-defined, and this fact

is used in the proof of Proposition 4.4 to show that θ̄ is a

homomorphism(refer to Result 4.B). However, it is clear

from the proof that to show θ̄ is well-defined it is not

necessary to assume A to be interval-valued fuzzy normal.

Proposition 4.6. Let A be an IVNG of a group G and let

θ be an automorphism of G such that Aθ = A(recall the

definition of Aθ given by Definition 3.3). Then θ induces

an automorphism θ̄ of G/A defined as follows : for each

x ∈ G, θ̄(Ax) = Aθ(x).

Proof. Let x, y ∈ G such that Ax = Ay. We show that

θ̄(Ax) = θ̄(Ay), i.e., Aθ(x)(g) = Aθ(y)(g) for each

g ∈ G. Let g ∈ G. Since θ is an automorphism of G, there

exists a g∗ ∈ G such that θ(g∗) = g. Since Ax = Ay,

Ax(g∗) = Ay(g∗), i.e., A(g∗x−1) = A(g∗y−1). Since

Aθ = A, Aθ(g∗x−1) = Aθ(g∗y−1). By Definition 3.3,

A(θ(g∗x−1)) = A(θ(g∗y−1)). Since θ is an automor-

phism of G, A(θ(g∗)θ(x−1)) = A(θ(g∗)θ(y−1)). Thus

A(gθ(x−1)) = A(gθ(y−1)), i.e., Aθ(x)(g) = Aθ(y)(g).

So θ̄(Ax) = θ̄(Ay). Hence θ̄ is well-defined. The proof
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of the fact that θ̄ is a homomorphism is analogous to the

corresponding part of the proof of Proposition 4.4, and thus

we omit the details. Now suppose Ax ∈ Kerθ̄ for each

x ∈ G. Then θ̄(Ax) = Aθ(x) = Ae. Let g ∈ G. Then

Aθ(x)(θ(g)) = Aeθ(g), i.e., A(θ(g)θ(x−1)) = Aθ(g).

Thus Aθ(gx−1) = Aθ(g), i.e., Aθ(gx−1) = Aθ(g). Since

Aθ = A, A(gx−1) = A(g). Then Ax(g) = Ae(g). Thus

Ax = Ae, i.e., Kerθ̄ = {Ae}. So θ̄ is injective. Hence θ̄

is an automorphism ofG/A. This completes the proof.

Theorem 4.7. Let A be an IVG of a finite group G and let

x, y ∈ G. Then GAx = GAy if and only if Ax = Ay.

Proof. By Result 3.B and Lemma 3.12, GA is a subgroup

of G and GA = {x ∈ G : Ax = Ae}.
(⇒): Suppose GAx = GAy for any x, y ∈ G. Then

xy−1 ∈ GA. Thus Axy−1 = Ae. Let g ∈ G. Then

Axy−1(g) = Ae(g), i.e., A(gyx−1) = A(g). Replacing g

by gy−1, which is also an arbitrary element of G, we get

that A(gx−1) = A(gy−1) for each y ∈ G. Thus Ax(g) =

Ay(g) for each y ∈ G. So Ax = Ay.

(⇐): Suppose Ax = Ay for any x, y ∈ G and let

g ∈ G. Then Ax(g) = Ay(g), i.e., A(gx−1) = A(gy−1).

In particular, A(yx−1) = A(yy−1) = A(e). Thus

yx−1 ∈ GA. So GAx = GAy. This completes the

proof.

Remark 4.8. Proposition 4.6 shows that there is a one-

to-one correspondence between the (right) cosets of GA in

G and the interval-valued fuzzy cosets of A, given by the

mapping x ↔ Ax for each x ∈ G. Hence we see that the

subgroup GA plays a key role in the analysis of interval-

valued fuzzy cosets.
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