DOI QR코드

DOI QR Code

Storage Quality of Ready-to-Eat Campbell Table Grapes as Affected by Active Modified Atmosphere Packaging

기체충진 포장조건에 따른 신선편이 캠벨 포도의 저장 중 품질변화

  • Received : 2012.06.09
  • Accepted : 2012.08.25
  • Published : 2012.10.31

Abstract

The storage quality of ready-to-eat Campbell table grapes which were packaged under modified atmospheres was investigated in order to examine the effect of high $O_2$ and $CO_2$ on the fruit. Fresh table grapes with 10-15 berries were packed into polypropylene (PP) trays and were top-sealed with polythylene terephthalate/PP film. The initial gas compositions inside the packages were air, 20% $O_2$/10% $CO_2$/70% $N_2$, and 40% $O_2$/60% $N_2$. Sealed packages with low density polyethylene film bags and perforated PP trays were also used as a further treatment and control, respectively. The quality attributes were assessed during storage at $5^{\circ}C$ for 28 days. Fruit packaged in high $CO_2$ concentration showed the lowest viable cell counts of inherent microorganisms among all samples, although they suffered from severe off-flavors. High levels of $O_2$ significantly lowered flesh weight loss and maintained the flavor of grape. In an overall sensory aspect, the high $O_2$ and $CO_2$ packages exhibited greater scores than the air and control at the end of the storage period. Other quality attributes showed no significant differences among treatments. Results suggest that packaging with an appropriate combination of high $O_2$ and $CO_2$ can be used as an effective processing treatment for improvement of the storability of ready-to-eat table grapes.

신선편이 포도 상품의 유통, 판매 중 부패억제 및 품질유지를 위한 환경기체조절포장기법의 활용 가능성을 확인하고자 살균소독, 세척, 절단 과정을 거친 캠벨 포도 시료에 대해 다양한 기체 충진 조건을 적용하여 플라스틱 포장용기에 밀봉한 후 $5^{\circ}C$에 저장하면서 품질변화를 살펴보았다. 고이산화탄소 조건에서 포도의 호흡률은 일반 대기조성에서의 호흡률과 크게 다르지 않았으나, 고산소 조건에서는 산소 소모율이 2배 정도 증가하는 비정상적인 호기호흡이 일어났다. 저온저장 중 포장 내부의 기체조성은 초기 기체충진 조건에 관계없이 $O_2$가 모두 소비되고 고농도의 $CO_2$가 축적되었으나, PE 포장구에서는 약 13% 이상의 $O_2$가 유지되었다. 포도의 품질인자 가운데 생체중량은 대조구인 통기 포장구에서만 1.0% 이상 감소하였고 고산소 처리구에서 가장 낮은 중량감소를 나타내었으며, 과육의 pH, 산도, 가용성 고형분 함량 및 경도, 과피 표면색, 폴리페놀 함량, PPO 활성에서는 기체충진 조건에 의한 유의적 차이를 구분할 수 없었다. 한편 고이산화탄소 처리구에서는 약 $10^1-10^2$ CFU/g 수준의 가장 낮은 미생물 균수를 나타내었으나 저장말기에 이취가 강하게 발생하였고, 고산소 처리구에서는 상대적으로 이취가 적고, 고유의 포도향이 유지되면서 관능검사 평가점수가 다소 높게 나타났다. 결론적으로 적정 농도의 고이산화탄소와 고산소를 병용한 환경기체조절포장은 신선편이 포도의 저장유통 중 품질유지에 효과적임을 확인할 수 있었지만, 최적의 포장조건을 찾기 위해서는 향후 추가적인 연구가 필요하다고 판단된다.

Keywords

References

  1. Statistics Korea. Statistics Related to Agricultural Industry/Crop Production, Available from: http://kostat.go.kr. Accessed on May 26, 2012.
  2. Carvajal-Millán E, Cavallo T, Orozco JA, Martinez MA, Tapia I, Guerrero VM, Rascon-Chu A, Llamas J, Gardea AA. Polyphenol oxidase activity, color changes, and dehydration in table grape rachis during development and storage as affected by N-(2-chloro-4-pyridyl)-N-phenylurea. J. Agr. Food Chem. 49: 946-951 (2001) https://doi.org/10.1021/jf000856n
  3. Crisosto CH, Garner D, Crisosto G. Carbon dioxide-enriched atmospheres during cold storage limit losses from Botrytis but accelerate rachis browning of 'Red globe' table grapes. Postharvest Biol. Tec. 26: 181-189 (2002) https://doi.org/10.1016/S0925-5214(02)00013-3
  4. Costa C, Lucera A, Conte A, Mastromatteo M, Speranza B, Antonacci A, Del Nobile MA. Effects of passive and active modified atmosphere packaging conditions on ready-to-eat table grape. J. Food Eng. 102: 115-121 (2011) https://doi.org/10.1016/j.jfoodeng.2010.08.001
  5. Artes-Hernandez F, Aguayo E, Artes F. Alternative atmosphere treatments for keeping quality of 'Autumn seedless' table grape during long-term cold storage. Postharvest Biol. Technol. 31: 59- 67 (2004) https://doi.org/10.1016/S0925-5214(03)00116-9
  6. Deng Y, Wu Y, Li Y. Effect of high $CO_{2}$ and low $O_{2}$ atmospheres on the berry drop of 'Kyoho' grapes. Food Control 100: 768-773 (2007)
  7. Del Nobile MA, Conte A, Scrocco C, Brescia L, Speranza B, Sinigaglia M, Perniola R, Antonacci D. A study on quality loss of minimally processed grapes as affected by film packaging. Postharvest Biol. Tec. 51: 21-26 (2009) https://doi.org/10.1016/j.postharvbio.2008.06.004
  8. Beaudry RM. Effect of $O_{2}$ and $CO_{2}$ partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Tec. 15: 293-303 (1999) https://doi.org/10.1016/S0925-5214(98)00092-1
  9. Kader AA, Ben-Yehoshua S. Effect of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables. Postharvest Biol. Tec. 20: 1-13 (2000) https://doi.org/10.1016/S0925-5214(00)00122-8
  10. Wszelaki AL, Mitcham EJ. Effects of superatmospheric oxygen on strawberry fruit quality and decay. Postharvest Biol. Tec. 20: 125-133 (2000) https://doi.org/10.1016/S0925-5214(00)00135-6
  11. Deng Y, Wu Y, Li Y. Physiological responses and quality attributes of 'Kyoho' grapes to controlled atmosphere storage. LWT-Food Sci. Technol. 39: 584-590 (2006) https://doi.org/10.1016/j.lwt.2005.05.001
  12. Wu Y, Deng Y, Li Y. Changes in enzyme activities in abscission zone and berry drop of 'Kyoho' grapes under high $O_{2}$ or $CO_{2}$ atmospheric storage. LWT-Food Sci. Technol. 41: 175-179 (2008) https://doi.org/10.1016/j.lwt.2007.01.015
  13. KFRI. Technology development for maintaining quality and safety of fresh agricultural produce. pp. 130-136. In: Development of Quality Assessment and Postharvest Technology on Agricultural Produce (E080200-08074). Korea Food Research Institute, Seongnam, Korea (2008)
  14. Hong SI, Kim DM. Influence of oxygen concentration and temperature on respiratory characteristics of fresh-cut green onion. Int. J. Food Sci. Tech. 36: 283-290 (2001) https://doi.org/10.1046/j.1365-2621.2001.00456.x
  15. Poudel PR, Tamura H, Kataoka I, Mochioka R. Phenolic compounds and antioxidant activities of skins and seeds of five wild grape and two hybrids natives to Japan. J. Food Com. Anal. 21: 622-625 (2008) https://doi.org/10.1016/j.jfca.2008.07.003
  16. Orak HH. Total antioxidant activities, phenolics, anthocyanins, polyphenol oxidase activities of selected red grape cultivars and their correlations. Sci. Hortic.-Amsterdam 111: 235-241 (2007) https://doi.org/10.1016/j.scienta.2006.10.019
  17. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  18. Mitcham EJ, Crisosto CH, Kader AA. Grape: recommendations for maintaining postharvest quality. Available from: http://postharvest. ucdavis.edu/PFfruits/Grape. Accessed on May 10, 2012.
  19. Martinez-Romero D, Guillen F, Castillo S, Valero D, Serrano M. Modified atmosphere packaging maintains quality of table grapes. J. Food Sci. 68: 1838-1843 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb12339.x
  20. Valverde JM, Guillen F, Martinez-Romero D, Castillo S, Serrano M, Valero D. Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and eugenol, menthol, or thymol. J. Agr. Food Chem. 53: 7458-7464 (2005) https://doi.org/10.1021/jf050913i
  21. Siriphanich JT, Kader AA. Effects of $CO_{2}$ on total phenolics, phenylalanine ammonia lyase, and polyphenol oxidase in lettuce tissue. J. Am. Soc. Hort. Sci. 110: 249-253 (1985)
  22. Del Nobile MA, Sinigaglia M, Conte A, Speranza B, Scrocco C, Brescia L, Bevilacqua A, Laverse J, La Notte E, Antonacci D. Influence of postharvest treatments and film permeability on quality decay kinetics of minimally processed grapes. Postharvest Biol. Tec. 47: 389-396 (2008) https://doi.org/10.1016/j.postharvbio.2007.07.004
  23. Retamales J, Defilippi BG, Arias M, Castillo P, Manriquez D. High-$CO_{2}$ controlled atmospheres reduce decay incidence in Thompson Seedless and Red Globe table grape. Postharvest Biol. Tec. 29: 177-182 (2003) https://doi.org/10.1016/S0925-5214(03)00038-3
  24. Valero A, Begum M, Hocking AD, Marin S, Ramos AJ, Sanchis V. Mycelial growth and ochratoxin A production by Aspergillus section Nigri on simulated grape medium in modified atmospheres. J. Appl. Microbiol. 105: 372-379 (2008) https://doi.org/10.1111/j.1365-2672.2008.03760.x
  25. Avissar I, Drobey S, Pesis E. Characterization of acetaldehyde effects on Rhizopus stolonifer and Botrytis cinerea. Ann. Appl. Biol. 116: 213-220 (1990) https://doi.org/10.1111/j.1744-7348.1990.tb06601.x
  26. Pesis E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Tec. 37: 1-19 (2005) https://doi.org/10.1016/j.postharvbio.2005.03.001
  27. Amanatidou A, Smid EJ, Gorris LGM. Effect of elevated oxygen and carbon dioxide on the surface growth of vegetable-associated micro organisms. J. Appl. Microbiol. 86: 429-438 (1999) https://doi.org/10.1046/j.1365-2672.1999.00682.x
  28. Hoogerwerf SW, Kets EPW, Dijksterhuis J. High-oxygen and high-carbon dioxide containing atmospheres inhibit growth of food associated moulds. Lett. Appl. Microbiol. 35: 419-422 (2002) https://doi.org/10.1046/j.1472-765X.2002.01211.x
  29. Mathooko FM. Regulation of respiratory metabolism in fruits and vegetables by carbon dioxide. Postharvest Biol. Tec. 9: 247-264 (1996) https://doi.org/10.1016/S0925-5214(96)00019-1

Cited by

  1. Quality Changes in Delaware Grapes Treated with Chitosan during Storage vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.739
  2. Changes in quality characteristic of immature flat persimmon (Diospyros kaki Thunb) during heat treatment aging vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.301