DOI QR코드

DOI QR Code

In vitro Test of Mycelial Growth Inhibition of 5 Fungi Pathogenic to Strawberries by Ultraviolet-C (UV-C) Irradiation

자외선(UV-C) 조사에 의한 딸기병원균의 균사생장억제

  • Kim, Seon Ae (Department of Horticulture & Life Science and LED-IT Fusion Technology Research Center, Yeungnam University) ;
  • Ahn, Soon-Young (Department of Horticulture & Life Science and LED-IT Fusion Technology Research Center, Yeungnam University) ;
  • Oh, Wook (Department of Horticulture & Life Science and LED-IT Fusion Technology Research Center, Yeungnam University) ;
  • Yun, Hae Keun (Department of Horticulture & Life Science and LED-IT Fusion Technology Research Center, Yeungnam University)
  • 김선애 (영남대학교 원예생명과학과 및 LED-IT산업화융합센터) ;
  • 안순영 (영남대학교 원예생명과학과 및 LED-IT산업화융합센터) ;
  • 오욱 (영남대학교 원예생명과학과 및 LED-IT산업화융합센터) ;
  • 윤해근 (영남대학교 원예생명과학과 및 LED-IT산업화융합센터)
  • Received : 2012.06.05
  • Accepted : 2012.08.13
  • Published : 2012.10.31

Abstract

In strawberry production, among others, the high incidence of diseases by pathogenic fungi resulting in the reduction of fruit yield and quality requires the development of eco-friendly management systems rather than chemical sprays to control them. The diameter of colonies grown in media at $25^{\circ}C$ for 5 days was measured to evaluate the in vitro inhibition of mycelial growth of 5 pathogenic fungi by irradiation with ultraviolet (UV-C, 264 nm). The mycelial growth of 5 pathogenic fungi was inhibited in potato dextrose agar (PDA) by the irradiation of UV-C for 1 hour a day, and was dramatically inhibited by the irradiation of UV-C for 9-12 h a day. The irradiation of UV-C for 9-12 h a day inhibited completely the growth of the late blight pathogen, Phytophthora cactorum. The irradiation distance of 40 to 50 cm was effective for the inhibition of mycelial growth of fungi. The mycelial growth of fungi without pre-incubation was inhibited strongly by UV-C irradiation compared to fungi pre-incubated for 2 days without light. The mycelia growth of Colletotrichum gloeosprioides and Fusarium oxysporum was inhibited strongly by UV-C irradiation in vegetable 8 juice agar compared to PDA.

딸기병해는 생육기 동안 과실의 생산량감소 및 품질저하를 가져오고 있으며, 약제방제의 어려움 등으로 인해 친환경적인 병해 방제법의 개발이 요구된다. 실내에서 자외선(UV-C, 264 nm)조사에 의한 딸기병원균의 균사생장 억제효과를 구명하기 위하여 5종의 딸기병원균을 자외선을 조사하면서 $25^{\circ}C$ 항온실에서 배양한 후 균총의 직경을 측정하였다. 5종의 딸기병원균을 PDA 상에서 배양하면서 자외선을 조사하면, 하루 1시간 조사에 의해서도 생장이 억제되었고 9-12시간을 조사한 균의 생육은 현저하게 억제되었으며 역병균은 생육이 완전하게 억제되었다. 자외선광원과 병원균의 거리에서는 40-50 cm의 거리에서 자외선을 조사한 배양기에서 병원균생장의 억제효과가 크게 나타났다. 배지에 접종한 후 바로 자외선을 처리한 병원균은 모두 2일간 배양한 후 자외선을 접종한 배양기에서보다 생육이 억제되었다. 딸기 탄저병균(C. gloeosprioides)과 시들음병균(F. oxysporum)은 V8A에서 자외선에 의한 균의 생장억제효과가 큰 것으로 나타났다.

Keywords

References

  1. RDA. 2010 New technology of agriculture and food (IV). Rural Development Administration, Suwon, Korea. p. 1357 (2010)
  2. Korean Statistical Information Service (KOSIS). 2009 The production of vegetable. Available from: http://kosis.kr. Accessed May 30, 2012.
  3. Mass JL. Compendium of strawberry diseases. 2nd ed. APS Press, New York, NY, USA (1998)
  4. Bristow PR, McNicol RJ, Williamson B. Infection of strawberry flowers by Botrytis cinerea and its relevance to grey mould development. Ann. Appl. Biol. 109: 545-554 (1986) https://doi.org/10.1111/j.1744-7348.1986.tb03211.x
  5. Jarvis WR. The infection of strawberry and raspberry fruits by Botrytis cinerea Fr. Ann. Appl. Biol. 50: 569-575 (1962) https://doi.org/10.1111/j.1744-7348.1962.tb06049.x
  6. Nam MH, Nam YG, Kim TI, Kim HS, Jang WS, Lee WK, Lee IH, Kang HK, Park YJ, Choi JM, Whang KS. Compendium of strawberry diseases and pests. Chungnam Strawberry Association, Daejeon, Korea. pp. 54-68 (2009)
  7. Powelson RL. Initiation of strawberry fruit rot caused by Botrytis cinerea. Phytopathology 50: 491-494 (1960)
  8. Legard DE, MacKenzie SJ, Mertely JC, Chandler CK, Peres NA. Development of a reduced use fungicide program for control of Botrytis fruit rot on annual winter strawberry. Plant Dis. 89: 1353-1358 (2005) https://doi.org/10.1094/PD-89-1353
  9. Mertely JC, MacKenzie SJ, Legard DE. Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit. Plant Dis. 86: 1019-1024 (2002) https://doi.org/10.1094/PDIS.2002.86.9.1019
  10. Wilcox WF, Seem RC. Relationship between strawberry gray mold incidence, environmental variables, and fungicide applications during different periods of the fruiting season. Phytopathology 84: 264-270 (1994) https://doi.org/10.1094/Phyto-84-264
  11. Kim BS, Choi KJ, Cho KY. Responses to several fungicides of Botrytis cinerea isolates resistant to benzimidazole and dicarboximide fungicides. Korean J. Plant Pathol. 9: 98-103 (1993)
  12. Kim CH, Kwon SI. Parasitic fitness of procymidone-resistant isolates of Botrytis cinerea on strawberry. Korean J. Plant Pathol. 9: 26-30 (1993)
  13. Ha YH. Policy for environment-friendly agriculture in 21st century. pp.3-6. In: Annual Conference on Organic Farming. July 3, RDA, Suwon, Korea. The Korean Society of Organic Farming, Suwon, Korea (2003)
  14. Kim GJ, Choi MK, Park JH, Cha JS. Growth inhibition effect of environment-friendly farm materials on fungal pathogens of grape. Res. Plant Dis. 14: 187-192 (2008) https://doi.org/10.5423/RPD.2008.14.3.187
  15. Kowalski WJ, Bahnfleth WP, Witham DL, Severin BF, Whittam TS. Mathematical modeling of ultraviolet germicidal irradiation for air disinfection. Quant. Microbiol. 2: 249-270 (2000) https://doi.org/10.1023/A:1013951313398
  16. Manning WJV, Tiedemann A. Climate change: Potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 88: 219-245 (1995) https://doi.org/10.1016/0269-7491(95)91446-R
  17. National Institute for Occupational Safety and Health (NIOSH). NIOSH eNews, 5(12). Available from: http://www.cdc.gov/niosh/ enews/enewsV5N12.html. Accessed May 30, 2012.
  18. Marquenie D, Lammertyn J, Geeraerd AH, Soontjens C, Van Impe JF, Nicolai BM, Michiels CW. Inactivation of conidia of Botrytis cinerea and Moniliniafructigena using UV-C and heat treatment. Int. J. Food Microbiol. 74: 27-35 (2002) https://doi.org/10.1016/S0168-1605(01)00719-X
  19. Stevens C, Khan VA, Lu JY, Wilson CL, Pusey PL, Kabwe MK, Igwegbe ECK, Chalutz E, Droby S. The germicidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches. Crop Prot. 17: 75-84 (1998) https://doi.org/10.1016/S0261-2194(98)80015-X
  20. Luckey TD. Radiation hormesis. p.206. CRC Press, Boca Raton, FL, USA (1991)
  21. Shama G, Alderson P. UV hormesis in fruits: A concept ripe for commercialization. Trends Food Sci. Tech. 16: 128-136 (2005) https://doi.org/10.1016/j.tifs.2004.10.001
  22. Lu JY, Stevens C, Khan VA, Kabwe MK, Wilson CL. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. J. Food Quality 14: 299-305 (1987)
  23. Stevens C, Khan VA, Tang AY, Lu JY. The effect of ultraviolet irradiation on mold rots and nutrients of stored sweet potatoes. J. Food Protect. 53: 223-226 (1990) https://doi.org/10.4315/0362-028X-53.3.223
  24. Chalutz E, Droby S, Wilson CL, Wisniewski ME. UV-induced resistance to postharvest diseases of citrus fruits. J. Photoch. Photobio. B 15: 367-374 (1992) https://doi.org/10.1016/1011-1344(92)85143-I
  25. Liu J, Stevens C, Khan VA, Lu JY, Wilson CL, Adeyeye O, Kabwe MK, Pusey PL, Chalutz E, Sultana T, Droby S. Application of ultraviolet-C light on storage rots and ripening of tomatoes. J. Food Protect. 56: 868-872 (1993) https://doi.org/10.4315/0362-028X-56.10.868
  26. Stevens C, Wilson CL, Lu JY, Khan VA, Chalutz E, Droby S, Kabwe MK, Huang Z, Adeyeye O, Pusey LP, Wisniewski M, West M. Plant hormesis induced by ultraviolet light-C for controlling postharvest and diseases of tree fruits. Crop Prot. 15: 129-134 (1996) https://doi.org/10.1016/0261-2194(95)00082-8
  27. Choi SJ. The identification of stilbene compounds and the change of their contents in UV-irradiated grapevine leaves. Korean J. Hortic. Sci. 29: 374-381 (2011)
  28. Jansen MAK, Hectors K, Orien NM, Guisez Y, Potters G. Plant stress and human health: Do human consumers benefit from UVB acclimated crops? Plant Sci. 175: 449-458 (2008) https://doi.org/10.1016/j.plantsci.2008.04.010
  29. Kim JJ, Ben-Yehoshua S, Shapiro B, Henis Y, Carmeli S. Accumulation of scoparone in heat-treated lemon fruit inoculated with Penicillium digitatum Sacc. Plant Physiol. 97: 880-885 (1991) https://doi.org/10.1104/pp.97.3.880
  30. Rodov V, Ben-Yehoshua, Kim JJ, Shapiro B, Ittah Y. Ultraviolet illumination induces scoparone production in kumquat and orange fruit and improves decay resistance. J. Am. Soc. Hortic. Sci. 117: 788-792 (1992)
  31. Andebrhan J, Wood RKS. The effect of ultraviolet radiation on the reaction of Phaseolus vulgaris to Colletotrichum lindemuthianum. Can. J. Botany 56: 2247-2251 (1980)
  32. Bridg MA, Klarman WL. Soybean phytoalexin, hydroxyphaseollin, induced by ultraviolet irradiation. Phytopathology 63: 606- 609 (1973) https://doi.org/10.1094/Phyto-63-606
  33. Hemdl GJ, Muller Niklas G, Frick J. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature 361: 717-719 (1993) https://doi.org/10.1038/361717a0
  34. Wu BM, Subbarao KV, van Bruggen AHC. Factors affecting the survival of Bremialactucae sporangia deposited on lettuce leaves. Phytopathology 90: 827-833 (2000) https://doi.org/10.1094/PHYTO.2000.90.8.827
  35. Wilson CL, EI-Ghaouth A, Chalutz E, Droby S, Stevens C, Lu J, Khan V, Arul J.Potential of induced resistance to control postharvest diseases of fruits and vegetables. Plant Dis. 78: 837-884 (1994) https://doi.org/10.1094/PD-78-0837
  36. Stevens C, Khan VA, Lu J, Wilson CL, Pusey LP, Igwegbe E, Kabwe K, Mafolo Y, Liu J, Chalulz E, Droby S. Integration of ultraviolet (UV-C) light with yeast treatment for control of postharvest storage rots of fruits and vegetables. Biol. Control 10: 98- 103 (1997) https://doi.org/10.1006/bcon.1997.0551
  37. Marquenie D, Lammertyn J, Geeraerd AH, Soontjens C, Van Impe JF, Nicolai BM, Michiels CW. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. Int. J. Food Microbiol. 74: 27-35 (2002) https://doi.org/10.1016/S0168-1605(01)00719-X
  38. Hidaka Y, Kubota K. Study on the sterilization of grain surface using UV radiation -development and evaluation of UV irradiation equipment. Jpn. Agric. Res. Quart. 40: 157-161 (2006) https://doi.org/10.6090/jarq.40.157
  39. Valero A, Begum M, Leong S, Hocking AD, Ramos AJ, Sanchis V, Marin S. Fungi isolated from grapes and raisins as affected by germicidal UVC light. Lett. Appl. Microbiol. 45: 238-243 (2007) https://doi.org/10.1111/j.1472-765X.2007.02175.x

Cited by

  1. Development of Control Method for Strawberry Bacterial Angular Spot Disease (Xanthomonas fragariae) vol.19, pp.3, 2015, https://doi.org/10.7585/kjps.2015.19.3.287