DOI QR코드

DOI QR Code

Preparation of Hollow Silica by Spray Drying of Nano Silica Particles and Its Heat Transfer Property

나노 실리카의 분무건조를 이용한 중공구 입자 제조와 실리카중공구의 열전달 특성

  • Youn, Chan Ki (Eco-composite Materials Center, Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lim, Hyung Mi (Eco-composite Materials Center, Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cha, Sujin (Eco-composite Materials Center, Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Dae Sung (Eco-composite Materials Center, Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Seung-Ho (Eco-composite Materials Center, Green Ceramic Division, Korea Institute of Ceramic Engineering and Technology)
  • 윤찬기 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 임형미 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 차수진 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 김대성 (한국세라믹기술원 그린세라믹본부 에코복합소재센터) ;
  • 이승호 (한국세라믹기술원 그린세라믹본부 에코복합소재센터)
  • Received : 2012.08.03
  • Accepted : 2012.09.21
  • Published : 2012.10.27

Abstract

Hollow silica spheres were prepared by spray drying of precursor solution of colloidal silica. The precursor solution is composed of 10-20 nm colloidal silica dispersed in a water or ethanol-water mixture solvent with additives of tris hydroxymethyl aminomethane. The effect of pH and concentrations of the precursor and additives on the formation of hollow sphere particles was studied. The spray drying process parameters of the precursor feeding rate, inlet temperature, and gas flow rate are controlled to produce the hollow spherical silica. The mixed solvent of ethanol and water was preferred because it improved the hollowness of the spheres better than plain water did. It was possible to obtain hollow silica from high concentration of 14.3 wt% silica precursor with pH 3. The thermal conductivity and total solar reflectivity of the hollow silica sample was measured and compared with those values of other commercial insulating fillers of glass beads and $TiO_2$ for applications of insulating paint, in which the glass beads are representative of the low thermal conductive fillers and the $TiO_2$ is representative of infrared reflective fillers. The thermal conductivity of hollow silica was comparable to that of the glass beads and the total solar reflectivity was higher than that of $TiO_2$.

Keywords

References

  1. M. Wei, C. J. Van Oers, X. Hao, Q. Qiu, P. Cool and S. Liu, Microporous Mesoporous Mater., 138, 17 (2011). https://doi.org/10.1016/j.micromeso.2010.09.036
  2. A. -J. Wang, Y. -P. Lu and R. -X. Sun, Mater. Sci. Eng., 460-461, 1 (2007). https://doi.org/10.1016/j.msea.2007.02.043
  3. J. K. Cochran, Curr. Opin. Solid State Mater. Sci., 3, 474 (1998). https://doi.org/10.1016/S1359-0286(98)80010-7
  4. F. Caruso, R. A. Caruso and H. Mohwald, Science, 282, 1111 (1998). https://doi.org/10.1126/science.282.5391.1111
  5. C. J. Martinez, B. Hockey, C. B. Montgomery and S. Semancik, Langmuir, 21, 7937 (2005). https://doi.org/10.1021/la050118z
  6. W. Yin, W. Wang, M. Shang, L. Zhou, S. Sun and L. Wang, Eur. J. Inorg. Chem., 2009, 4379 (2009). https://doi.org/10.1002/ejic.200900614
  7. S. Sadasivan and G. B. Sukhorukov, J. Colloid Interface Sci., 304, 437 (2006). https://doi.org/10.1016/j.jcis.2006.09.010
  8. H. Bamnolker, B. Nitzan, S. Gura and S. Margel, J. Mater. Sci. Lett., 16, 1412 (1997). https://doi.org/10.1023/A:1018565428355
  9. S. Schacht, Q. Huo, I. G. Voigt-Martin, G. D. Stucky and F. Schuth, Science, 273, 768 (1996). https://doi.org/10.1126/science.273.5276.768
  10. T. Kato, M. Tashiro, K. Sugimura, T. Hyodo, Y. Shimizu and M. Egashira, J. Ceram. Soc. Jpn., 110, 146 (2002). https://doi.org/10.2109/jcersj.110.146
  11. X. Qi, C. Gao, Z. Zhang, S. Chen, B. Li and S. Wei, Int. J. Hydrogen Energy, 37, 1518 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.034
  12. Z. Deng, M. Chen, S. Zhou, B. You and L. Wu, Langmuir, 22, 6403 (2006). https://doi.org/10.1021/la060944n
  13. Y. Lu, J. McLellan and Y. Xia, Langmuir, 20, 3464 (2004). https://doi.org/10.1021/la036245h
  14. W. S. Cheow, S. Li and K. Hadinoto, Chem. Eng. Res. Des., 88, 673 (2010). https://doi.org/10.1016/j.cherd.2009.11.012
  15. P. Luo and T. G. Nieh, Biomaterials, 17, 1959 (1996). https://doi.org/10.1016/0142-9612(96)00019-1
  16. P. Luo and T. G. Nieh, Mater. Sci. Eng. C, 3, 75 (1995). https://doi.org/10.1016/0928-4931(95)00089-5
  17. X. Q. Cao, R. Vassen, S. Schwartz, W. Jungen, F. Tietz and D. Stoever, J. Eur. Ceram. Soc., 20, 2433 (2000). https://doi.org/10.1016/S0955-2219(00)00112-6
  18. K. Hadinoto, P. Phanapavudhikul, Z. Kewu and R. B. H. Tan, Ind. Eng. Chem. Res., 45, 3697 (2006). https://doi.org/10.1021/ie0513191
  19. J. Jeon, S. Hwang, J. Ahn and H. Kim, Kor. J. Mater. Res., 19, 407 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.8.407

Cited by

  1. Preparation of Porous Anti-Insect Repellent Powder Using Spray Drying of Medicinal Herbal Extracts Anti-Insect Repellent Silica Sol vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1067
  2. Hard Surface-adhesive Properties of TiO2 Nanoparticles-encapsulated Microparticles Prepared by Spray Drying and Surface Coating Method vol.19, pp.6, 2018, https://doi.org/10.1007/s12221-018-8134-y