DOI QR코드

DOI QR Code

Synthesis of Silver Nanofibers Via an Electrospinning Process and Two-Step Sequential Thermal Treatment and Their Application to Transparent Conductive Electrodes

전기방사법과 이원화 열처리 공정을 통한 은 나노섬유의 합성 및 투명전극으로의 응용

  • Lee, Young-In (Institute of Nano Sensor Technology, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
  • 이영인 (한양대학교 나노센서연구소) ;
  • 좌용호 (한양대학교 융합화학공학과)
  • Received : 2012.10.04
  • Accepted : 2012.10.11
  • Published : 2012.10.27

Abstract

Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/$AgNO_3$ precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/$AgNO_3$ nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., $150^{\circ}C$ in $H_2$ for 0.5 h and $300^{\circ}C$ in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.

Keywords

References

  1. P. B. Catrysse and S. Fan, Nano Lett., 10, 2944 (2010). https://doi.org/10.1021/nl1011239
  2. Y. -I. Lee and Y. -H. Choa, Kor. J. Mater. Res., 22(4), 174 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.4.174
  3. J. -H. Lee, K. -H. Ko and B. -O. Park, J. Cryst. Growth, 247, 119 (2003). https://doi.org/10.1016/S0022-0248(02)01907-3
  4. M. M. Koebel, D. Y. Nadargi, G. Jimenez-Cadena and Y. E. Romanyuk, ACS Appl. Mater. Interfaces, 4, 2464 (2012). https://doi.org/10.1021/am300143z
  5. Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson and F. Atamny, Thin Solid Films, 460, 156 (2004). https://doi.org/10.1016/j.tsf.2004.01.052
  6. A. Kumar and C. Zhou, ACS Nano, 4, 11 (2010). https://doi.org/10.1021/nn901903b
  7. A. R. Rathmell, M. Nguyen, M. Chi and B. J. Wiley, Nano Lett., 12, 3193 (2012). https://doi.org/10.1021/nl301168r
  8. L. Hu, H. S. Kim, J. -Y. Lee, P. Peumans and Y. Cui, ACS Nano, 4, 2955 (2010). https://doi.org/10.1021/nn1005232
  9. A. R. Madaria, A. Kumar and C. Zhou, Nanotechnology, 22, 245201 (2011). https://doi.org/10.1088/0957-4484/22/24/245201
  10. D. S. McLachlan, M. Blaszkiewicz and R. E. Newnham, J. Am. Ceram. Soc., 73, 2187 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
  11. F. Lux, J. Mater. Sci., 28, 285 (1993). https://doi.org/10.1007/BF00357799
  12. Y. Sun, B. Mayers, T. Herricks and Y. Xia, Nano Lett., 3, 955 (2003). https://doi.org/10.1021/nl034312m
  13. J. Xu, J. Hu, C. Peng, H. Liu and Y. Hu, J. Colloid Interface Sci., 298, 689 (2006). https://doi.org/10.1016/j.jcis.2005.12.047
  14. W. C. Zhang, X. L. Wu, H. T. Chen, Y. J. Gao, J. Zhu, G. S. Huang and P. K. Chu, Acta Mater., 56, 2508 (2008). https://doi.org/10.1016/j.actamat.2008.01.043
  15. Y. Dai, W. Liu, E. Formo, Y. Sun and Y. Xia, Polym. Adv. Technol. 22, 326 (2011). https://doi.org/10.1002/pat.1839
  16. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Ed., 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  17. Y. -S. Yeom and H. -J. Ahn, Kor. J. Mater. Res., 21(8), 419 (2011). https://doi.org/10.3740/MRSK.2011.21.8.419
  18. H. Wu, R. Zhang, X. Liu, D. Lin and W. Pan, Chem. Mater., 19, 3506 (2007). https://doi.org/10.1021/cm070280i
  19. H. Xiang, Y. Long, X. Yu, X. Zhang, N. Zhao and J. Xu, CrystEngComm, 13, 4856 (2011). https://doi.org/10.1039/c0ce00980f

Cited by

  1. Study on the Diameter-Controlled Synthesis of Silver Nanofibers and Their Application to Transparent Conductive Electrodes vol.25, pp.10, 2015, https://doi.org/10.3740/MRSK.2015.25.10.537
  2. Characterization of Layered Perovskite Nanofibers using Electrospinning for Cathode Materials of Low Temperature-operating Solid Oxide Fuel Cell vol.13, pp.2, 2017, https://doi.org/10.7849/ksnre.2017.6.13.2.050