DOI QR코드

DOI QR Code

Synthesis and electromagnetic properties of FeNi alloy nanofibers using an electrospinning method

  • Lee, Young-In (Institute of Nano Sensor Technology, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
  • Received : 2012.09.20
  • Accepted : 2012.10.12
  • Published : 2012.10.31

Abstract

FeNi alloy nanofibers have been prepared by an electrospinning process followed by air-calcination and H2 reduction to develop electromagnetic (EM) wave absorbers in the giga-hertz (GHz) frequency range. The thermal behavior and phase and morphology evolution in the synthetic processes were systematically investigated. Through the heat treatments of calcination and H2 reduction, as-spun PVP/FeNi precursor nanofiber has been stepwise transformed into nickel iron oxide and FeNi phases but the fibrous shape was maintained perfectly. The FeNi alloy nanofiber had the high aspect ratio and the average diameter of approximately 190 nm and primarily composed of FeNi nanocrystals with an average diameter of ~60 nm. The FeNi alloy nanofibers could be used for excellent EM wave absorbing materials in the GHz frequency range because the power loss of the FeNi nanofibers increased up to 20 GHz without a degradation and exhibited the superior EM wave absorption properties compared to commercial FeNi nanoparticles.

Keywords

References

  1. S. Kimura, T. Kato, T. Hyodo, Y. Shimizu and M. Egashira, "Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method", J. Magn. Magn. Mater. 312 (2007) 181. https://doi.org/10.1016/j.jmmm.2006.09.027
  2. J. Wei, J. Liu and S. Li, "Electromagnetic and microwave absorption properties of $Fe_{3}O_{4}$ magnetic films plated on hollow glass spheres", J. Magn. Magn. Mater. 312 (2007) 414. https://doi.org/10.1016/j.jmmm.2006.11.128
  3. S.W. Phang, M. Tadokoro, J. Watanabe and N. Kuramoto, "Microwave absorption behaviors of polyaniline nanocomposites containing $TiO_{2}$ nanoparticles", Curr. Appl. Phys. 8 (2008) 391. https://doi.org/10.1016/j.cap.2007.10.022
  4. S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H. Ota, Y. Houjou and R. Sato, "GHz microwave absorption of a fine $\alpha$-Fe structure produced by the disproportionation of $Sm_{2}Fe_{17}$ in hydrogen", J. Alloys Compd. 330 (2002) 301. https://doi.org/10.1016/S0925-8388(01)01504-3
  5. Y. Deng, L. Zhao, B. Shen, L. Liu and W. Hu, "Microwave characterization of submicrometer-sized nickel hollow sphere composites", J. Appl. Phys. 100 (2006) 14304. https://doi.org/10.1063/1.2210187
  6. J.R. Liu, M. Itoh and K.I. Machida, "Magnetic and electromagnetic wave absorption properties of $\alpha$-Fe/Z-type Ba-ferrite nanocomposites", Appl. Phys. Lett. 88 (2006) 062503. https://doi.org/10.1063/1.2170402
  7. X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei and C.G. Lee, "Microwave absorption properties of the carbon-coated nickel nanocapsules", Appl. Phys. Lett. 89 (2006) 053115. https://doi.org/10.1063/1.2236965
  8. W.F. Yang, L. Qiao, J.Q. wei, Z.Q. Zhang, T. Wang and F.S. Li, "Microwave permeability of flake-shaped FeCuNb-SiB particle composite with rotational orientation", J. Appl. Phys. 107 (2010) 033913. https://doi.org/10.1063/1.3291129
  9. I. Chicinas, O. Geoffroy, O. Isnard and V. Pop, "AC magnetic properties of the soft magnetic composites based on nanocrystalline Ni-Fe powders obtained by mechanical alloying", J. Magn. Magn. Mater. 310 (2007) 2474. https://doi.org/10.1016/j.jmmm.2006.11.019
  10. Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications", IEEE Trans. Magn. 44 (2008) 2100. https://doi.org/10.1109/TMAG.2008.2001073
  11. M.S. Kim, E.H. Min and J.G. Koh, "Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber", J. Mag. Mag. Mater. 321 (2009) 581. https://doi.org/10.1016/j.jmmm.2008.09.033
  12. M. Itoh, J.R. Liu, T. Horikawa and K. Machida, "Electromagnetic wave absorption properties of nanocomposite powders derived from intermetallic compounds and amorphous carbon", J. Alloy Comp. 408 (2006) 1400. https://doi.org/10.1016/j.jallcom.2005.04.031
  13. D. Li and Y. Xia, "Fabrication of titania nanofibers by electrospinning", Nano Lett. 3 (2003) 555. https://doi.org/10.1021/nl034039o
  14. C.-G. Song and J.-W. Yoon, "Optical properties of Al doped ZnO nanofibers prepared by electrospinning", J. Kor. Cryst. Growth and Cryst. Technol. 21 (2011) 205. https://doi.org/10.6111/JKCGCT.2011.21.5.205
  15. J.Y. Hwang, H.J. Kim, N.-H. Park, H. Huh, C.K. Park and J.-W. Yoon, "Fabrication of PLA/$TiO_{2}$ nanofibers using melt-electro-spinning", J. Kor. Cryst. Growth and Cryst. Technol. 21 (2011) 124. https://doi.org/10.6111/JKCGCT.2011.21.3.124
  16. S. Cavaliere, S. Subianto, L. Chevallier, D.J. Jones and J. Roziere, "Single step elaboration of size-tuned Pt loaded titania nanofibres", Chem. Commun. 47 (2011) 6834. https://doi.org/10.1039/c1cc11716e
  17. S.G. Shin and S.R. Lee, "Effect of aspect ratio on percolation structure of two-phase composites with conductivity", Korean J. Met. Mater. 48 (2010) 581.

Cited by

  1. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen vol.6, pp.1, 2016, https://doi.org/10.1038/srep37701