DOI QR코드

DOI QR Code

인공경량골재의 탄산화 반응에 따른 물성향상에 관한 연구

Property enhancement of lightweight aggregate by carbonation processing

  • 박준영 (경기대학교 일반대학원 신소재공학과) ;
  • 김유택 (경기대학교 일반대학원 신소재공학과) ;
  • 최윤재 (경기대학교 일반대학원 신소재공학과)
  • Park, Junyoung (Department of the Materials Engineering, Kyonggi University) ;
  • Kim, Yootaek (Department of the Materials Engineering, Kyonggi University) ;
  • Choi, Yunjae (Department of the Materials Engineering, Kyonggi University)
  • 투고 : 2012.09.17
  • 심사 : 2012.10.12
  • 발행 : 2012.10.31

초록

순환유동층 연소방식의 화력발전소에서 석탄을 연소시킨 후 발생하는 석탄재 중 탄산화 반응 인자인 Ca 성분을 다량 포함한 비산회를 시멘트에 일정량 치환하여 제조한 인공경량 경화체를 초임계상태에서 이산화탄소($CO_2$)를 고정화하여 골재의 기계적 물성향상을 도모하였다. 초임계 분위기 $40^{\circ}C$ 조건에서 비산회의 치환량을 변화시켜 재령일수별 탄산화를 시행하였다. 비산회 치환량에 따른 탄산화 반응시킨 인공경량골재 경화체의 무게변화율, TG/DTA 분석, 1 % 페놀프탈레인 알칼리성 측정을 통하여 탄산화 진행여부를 확인하였으며 28일까지의 재령 이후 경화체의 압축강도 측정과 비중측정을 통하여 골재의 기계적 물성향상과 인공경량골재의 기준 비중치인 2.0 이하의 비중값을 갖는 탄소고정 인공경량골재 경화체를 얻는 것이 가능할 것으로 판단되었다.

The mechanical property enhancement was studied using fly ash produced from fluidized bed type boiler in power plant, which contains a lot of Ca component being used to carbonate for $CO_2$ fixation in the lightweight aggregates made of cement and some portion of fly ash as a cement substitution under the supercritical condition. Specimens having various fly ash substitution rates and curing periods were carbonated under the supercritical condition at $40^{\circ}C$. The weight change rate, carbonation rate by TG/DTA analysis, 1% Phenolphthalein test, specific gravity and mechanical compression strength test were performed to observe the mechanical property enhancement of the cemented materials after carbonation under the supercritical condition and to make sure those could be classified as lightweight aggregates having specific gravity under 2.0.

키워드

참고문헌

  1. K.G. Lee, "Bloating mechabism of artificial lightweight aggregate with reject ash", J. Kor. Crystal Growth 22[3] (2012) 158. https://doi.org/10.6111/JKCGCT.2012.22.3.158
  2. H.J. Kim, Y.T. Kim and C.S. Jang, "Characteristics of geopolymer based on recycling resources", J. Kor. Crystal Growth 22[3] (2012) 152. https://doi.org/10.6111/JKCGCT.2012.22.3.152
  3. Y.J. Choi and Y.T. Kim, "Effect of EAF dust on the formation of ultra lightweight aggreates by using bottom ash and dredged soil from coal power plant", J. Kor. Crystal Growth 21[3] (2011) 129. https://doi.org/10.6111/JKCGCT.2011.21.3.129
  4. N.S. Ahn, J.H. Lee and Y.H. Lee, "Sulfate attack according to the quantity of composition of cement and mineral admixtures", J. Kor. Building Construction Ins. 11[6] (2011) 547. https://doi.org/10.5345/JKIBC.2011.11.6.547
  5. J.Y. Park, Y.T. Kim and H.J. Kim, "Carbonation of coal fly ash for construction materials", J. Kor. Crystal Growth 22[3] (2012) 147. https://doi.org/10.6111/JKCGCT.2012.22.3.147
  6. S.H. Hong, B.D. Lee and S.H. Han, "Application of fly ash concrete in the pavement", J. Kor. Concrete Ins. 20[1] (2008) 701.
  7. J.S. Sim, K.G. Lee, Y.T. Kim and S.K. Kang, "Hydration characteristics of coal-fly ash containing high CaO compound", J. Kor. Ceramic Soc. 49[2] (2012) 185. https://doi.org/10.4191/kcers.2012.49.2.185
  8. W.S. Kim, T.K. Kang, M.S. Paik, S.S. Kim and S.J. Jung, "The experimental study on carbonation properties of high volume fly-ash concrete", J. Kor. Architectural Ins. 23[1] (2003) 207.
  9. H.S. Ahn, J.S. Kim and H.S. Lee, "A study on fixed amount of $CO_{2}$ and the estimation of production of $CaCO_{3}$ on waste concrete powder by wet carbonation", J. Kor. Architectural Ins. 27[7] (2011) 133.
  10. I.T. Kim, H.Y. Kim, G.I. Park, J.H. Yoo and J.H. Kim, "Effect of carbonation reaction of portlandite with supercritical carbon dioxide on the characteristics of cement matrix", Applied Chemistry 5[1] (2001) 60.

피인용 문헌

  1. Bloating mechanism for coal ash with iron oxide vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.077
  2. Carbonation Behavior of Lightweight Foamed Concrete Using Coal Fly Ash vol.53, pp.3, 2016, https://doi.org/10.4191/kcers.2016.53.3.354