DOI QR코드

DOI QR Code

Nonlinear 3D Image Correlator Using Fast Computational Integral Imaging Reconstruction Method

고속 컴퓨터 집적 영상 복원 방법을 이용한 비선형 3D 영상 상관기

  • 신동학 (동서대학교 IAI연구소) ;
  • 이준재 (계명대학교 게임모바일콘텐츠학과)
  • Received : 2012.04.24
  • Accepted : 2012.05.25
  • Published : 2012.10.31

Abstract

In this paper, we propose a novel nonlinear 3D image correlator using a fast computational integral imaging reconstruction (CIIR) method. In order to implement the fast CIIR method, the magnification process was eliminated. In the proposed correlator, elemental images of the reference and target objects are picked up by lenslet arrays. Using these elemental images, reference and target plane images are reconstructed on the output plane by means of the proposed fast CIIR method. Then, through nonlinear cross-correlations between the reconstructed reference and the target plane images, the pattern recognition can be performed from the correlation outputs. Nonlinear correlation operation can improve the recognition of 3D objects. To show the feasibility of the proposed method, some preliminary experiments are carried out and the results are presented by comparing the conventional method.

본 논문에서는 고속 컴퓨터 집적 영상 복원 방법을 이용하여 새로운 형태의 3D 비선형 상관기를 제안한다. 고속 컴퓨터 집적 영상 복원 방법을 구현하기 위해서 기존의 방법에서 확대 과정을 제거함으로서 고속 계산이 가능하다. 제안하는 상관기는 먼저 기준 물체와 목표 물체의 요소 영상들을 렌즈 배열을 통해 픽업한다. 이 픽업된 영상에 고속 컴퓨터 집적 영상 복원 방법을 사용하여 목표 평면 영상과 기준 평면 영상들이 복원된다. 복원된 기준 평면 영상과 목표 평면 영상들 간의 비선형 상호상관을 통해 인식을 수행한다. 비선형 상관 연산의 사용은 상관기의 3D 물체 인식 성능 향상시킬 수 있다. 제안된 방법의 유용함을 보이기 위해 기존의 방법과 비교하여 기초적인 상관관계 실험을 수행하고 그 결과를 보고한다.

Keywords

References

  1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, (Prentice Hall 2nd Edition January 15, 2002).
  2. T.-C. Poon and T. Kim, "Optical image recognition of three-dimensional objects," Appl. Opt. vol. 38, pp. 370-381, 1999. https://doi.org/10.1364/AO.38.000370
  3. B. Javidi and E. Tajahuerce, "Three-dimensional object recognition by use of digital holography," Opt. Lett. vol. 25, pp. 610-612, 2000. https://doi.org/10.1364/OL.25.000610
  4. Y. Frauel and B. Javidi, "Digital three-dimensional image correlation by use of computer reconstructed integral imaging," Appl. Opt. vol. 41, pp. 5488-5496, 2002. https://doi.org/10.1364/AO.41.005488
  5. J. Park, J. Kim, and B. Lee, "Three-dimensional optical correlator using a sub-image array," Opt. Express vol. 13, pp. 5116-5126, 2005. https://doi.org/10.1364/OPEX.13.005116
  6. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Real-time pickup method for a three-dimensional image based on integral photography," Appl. Opt. vol. 36, pp. 1598-1603, 1997. https://doi.org/10.1364/AO.36.001598
  7. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics," Opt. Lett. vol. 27, pp. 324-326, 2002. https://doi.org/10.1364/OL.27.000324
  8. H. Arimoto, "Integral three-dimensional imaging with computed reconstruction," Opt. Lett., vol. 26, pp. 157-159, 2001. https://doi.org/10.1364/OL.26.000157
  9. S.-H. Hong, J.-S. Jang, and B. Javidi, "Threedimensional volumetric object reconstruction using computational integral imaging," Opt. Express vol. 12, pp. 483-491, 2004. https://doi.org/10.1364/OPEX.12.000483
  10. B. Javidi, R. Ponce-Daz, and S.-H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett. vol. 31, pp. 1106-1108, 2006. https://doi.org/10.1364/OL.31.001106
  11. H. Yoo and D. K. Kim, "Three-dimensional image correlator using fast computational integral imaging reconstruction method based on pixel-to-pixel mapping," Opt. Commun. vol. 284. pp. 5110-5114, 2011. https://doi.org/10.1016/j.optcom.2011.07.026
  12. B. Javidi, "Nonlinear joint power spectrum based optical correlation," Appl. Opt. vol. 28, pp. 2358-2367, 1989. https://doi.org/10.1364/AO.28.002358