DOI QR코드

DOI QR Code

Analysis of Piled Raft Interactions in Sand with Centrifuge Test

원심모형실험을 통한 사질토 지반에서의 말뚝지지 전면기초 상호작용 분석

  • Park, Dong-Gyu (School of Civil and Environmental Eng., Yonsei Univ.) ;
  • Choi, Kyu-Jin (School of Civil and Environmental Eng., Yonsei Univ.) ;
  • Lee, Jun-Hwan (School of Civil and Environmental Eng., Yonsei Univ.)
  • 박동규 (연세대학교 토목환경 공학과) ;
  • 최규진 (연세대학교 토목환경 공학과) ;
  • 이준환 (연세대학교 토목환경 공학과)
  • Received : 2012.04.10
  • Accepted : 2012.10.18
  • Published : 2012.10.28

Abstract

In the design of a piled raft, the axial resistance is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, act as a key element changing resistances of the raft and group piles. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) in sands with different relative densities. The test results revealed that the increase of settlement resistance occurs separately with settlement by group pile - soil interactions. The axial resistance of group piles (at piled raft) increases by group pile - raft (pile cap) interactions and that of raft (at piled raft) decreases by group pile - raft (pile cap) interactions.

말뚝지지 전면기초는 무리말뚝과 전면기초의 지지력을 함께 설계에 적용할 수 있는 기초형식이다. 그러나 변위장 중첩과 구속응력의 증가 등으로 대변되는 무리말뚝 - 지반 - 전면기초 상호작용으로 인해 각각의 무리말뚝기초와 전면기초의 지지력 특성은 변화하게 되며, 이는 말뚝지지 전면기초의 설계에 있어 중요한 요소로써 작용한다. 본 연구에서는 말뚝지지 전면기초에서 발생하는 지지력요소들의 상호작용을 규명하기 위해 원심모형시험을 이용한 전면기초, 단독 말뚝기초, 무리말뚝(16본; $4{\times}4$), 말뚝지지 전면기초(16본; $4{\times}4$) 하중-재하 시험을 수행하였으며, 조밀하고 느슨한 사질토 지반에서의 무리말뚝-지반, 무리말뚝-지반-전면기초의 상호작용을 하중단계에 따른 지지력 특성변화를 기준으로 분석하였다. 실험결과 말뚝지지 전면기초의 상호작용에 의해 무리말뚝기초의 지지력은 증가하는 것으로 나타났으며, 전면기초의 경우 무리말뚝의 영향에 의해 지지력이 감소하는 것으로 확인되었다.

Keywords

References

  1. Brinch Hansen, J. (1961), "The ultimate resistance of rigid piles against transversal forces", Bulletin No.12, Danish Geotechnical Institute, Copenhagen, Denmark, pp.5-9.
  2. Fioravante, V. and Giretti, D. (2010), "Contact versus noncontact piled raft foundations", Canadian Geotechnical Journal, Vol.47, No.11, pp.1271-1287. https://doi.org/10.1139/T10-021
  3. Katzenbach, R., Arslan, U., Moormann, Chr., and Reul, O. (1998), "Piled raft foundation-Interaction between piles and raft", in International Conference on Soil Structure Interaction in Urban Civil Engineering, Darmstadt, 8-9 October 1998, Vol.2, No.4, pp.279-96.
  4. Katzenbach, R., Arslan, U., Moormann, Chr. (2000), "Piled raft foundation projects in Germany", Design Applications of Raft Foundations, Ed. by J.A. Hemsley, Thomas Telford Ltd., 323-391.
  5. Kim, D. S., Kim, N. R., Choo, Y. W., and Cho, G. C. (2012), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE Journal of Civil Engineering: (Posted online ahead of print) doi: 10.1007/s12205-013-1350-5.
  6. Kishida, G. and Meyerhof, G. G. (1965), "Bearing capacity of pile groups under eccentric loads in sand", Proceeding 6th ISCMFE, Totonto, Vol.2, pp.270-274.
  7. Liu, J. L., Yuan, Z. L., and Shang, K. P. (1985), "Cap-pile-soil interaction of bored pile groups", Proceeding of 11th ICSMFE, San Francisco, Vol.3, pp.1433-1436.
  8. Lee. S. H., Choi., Y. S., Chung, C. K., and Kim, M. M. (2000), "Influence of Pile Cap On The Behaviors of Vertically Loaded Pile Groups", Journal of KSCE, Vol.20, No.1-c, pp.91-98.
  9. Lee, S. H. and Chung, C. K. (2003), "New Design Method for Pile Group Under Vertical Load", Journal of Korean Geotechnical Society(KGS), Vol.19, No.1, pp.31-40.
  10. Lee, S. H., Park, Y. H., and Song, M. J. (2007), "A Practical Analysis Method for the Design of Piled Raft Foundation", Journal of Korean Geotechnical Society(KGS), Vol.23, No.12, pp. 83-94.
  11. Lee, Y. N., Lee, H. L., and Park, Y. H. (2001), "Behavior of Small - Scale Pile Group Under Vertical Loading", Journal of Korean Geotechnical Society(KGS), Vol.17, No.6, pp. 37-46.
  12. Meyerhof, G.G. (1956), "Penetration tests and bearing capacity of cohesionless soils", Journal of the soil mechanics and foundation division, ASCE, Vol.82, No.SM1, January, pp.1-19.
  13. Phung, D. Long (1993), "Footing with settlement-reducing piles in non-cohesive soil", Ph. D Dissertation, Department of geotechnical engineering, Chalmers University of Technology.
  14. Poulos, H. G. (2001), "Piled-raft foundation: design and applications", Geotechnique, Vol.51, No.2, pp.95-113. https://doi.org/10.1680/geot.51.2.95.40292
  15. Randolph, M. F. (1994), "Design Methods for pile groups and piled rafts", Proc 13th Inter. Conf. on Soil Mechanics and Foundation Engineering, New Delhi, India, Vol.5, pp.61-82.
  16. Randolph, M. F. and Wroth, C. P. (1978), "Analysis of deformation of vertically loaded piles", Journal of Geotechnical Engineering, ASCE, Vol.104, No.12, pp.1465-1488.

Cited by

  1. 모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성 vol.15, pp.7, 2014, https://doi.org/10.5762/kais.2014.15.7.4588