HI_x 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO₂-O₂ 혼합물 기체의 영향

한상진¹ · 김효섭¹ · 안병태¹ · 김영호^{1†} · 박주식² · 배기광² · 이종규³ ¹충남대학교 정밀응용화학과, ²한국에너지기술연구원, ³포항산업과학연구원

The Effect of SO₂-O₂ Mixture Gas on Phase Separation Composition of Bunsen Reaction with HI_x solution

SANGJIN HAN¹, HYOSUB KIM¹, BYUNGTAE AHN¹, YOUNGHO KIM^{1†}, CHUSIK PARK², KIKWANG BAE², JONGGYU LEE³

 ¹Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, 220 Gung-dong Yuseong-gu Daejeon, 305-764, Korea
²Hydrogen Energy Research Group, Korea Institute of Energy Research, 72-2 Jang-dong Yuseong-gu, Daejeon, 305-343, Korea
³Energy & Resources Research Department, Research Institute of Industrial Science & Technology, San32, Hyoja-dong, Nam-gu, Pohang, 790-330, Korea

Abstract >> The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the O_2 produced from a H₂SO₄ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A HI_x (I₂+HI+H₂O) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of I₂ in a HI_x solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using SO₂-O₂ mixture gases in the presence of the HI_x solution was carried out to identify the effect of O₂. The amount of I₂ unreacted under the feed of SO₂-O₂ mixture gases was little higher than that under the feed of SO₂ gas only, and the amount of HI produced was relatively decreased. The O₂ in SO₂-O₂ mixture gases also played a role to decrease the amount of a impurity in HI_x phase by only striping effect, while that in H₂SO₄ phase was hardly affected.

Key words : Sulfur-Iodine cycle(SI 사이클), Hydrogen production(수소 제조), Bunsen reaction(분젠 반응), HI_x solution(HI_x 용액), Oxygen(산소)

1. 서 론

수소는 미래 에너지 산업으로부터 가장 촉망받는

신·재생 에너지 중 하나이다. 수소를 제조하는 방법 중 전기 분해를 통한 물 분해 공정 이외에 원자력 및 태양 열원과 같은 일차 에너지원을 이용하여 제조한 다면 선 순환구조의 청정에너지 시스템을 달성할 수 있을 것이다¹⁾. 일차 에너지원을 이용하여 물로부터 수소를 제조하는 방법 중 하나는 열화학 물 분해 수

⁺Corresponding author : yh_kim@cnu.ac.kr [접수일: 2012.9.27 수정일: 2012.10.15 게재확정일: 2012.10.26] Copyright ⓒ 2012 KHNES

소 제조이다. Funk와 Reinstrom²⁾에 의해 처음으로 제안된 이 공정은 여러 단계의 화학 반응들을 조합 하여 폐 사이클(closed cycle)을 이루도록 함으로써 직접 물을 열분해하는데 필요한 온도보다 저온의 열 로 물을 분해시킬 수 있는 장점이 있다.

황-요오드(SI; sulfur-iodine) 열화학 수소 제조 공정 은 열화학 물 분해 수소 제조 공정 중 하나로서 JAEA (Japan atomic energy agency)에서 bench 규모의 폐-사 이클 운전에 성공하였다³⁾. 또한 다른 연구자들에 의해 초고온 가스로(VHTR; very high temperature reactor) 와 연계하여 최적화된 운전 조건에서 약 50%의 높은 이론적인 효율을 갖는 것으로 보고되었다⁴⁻⁶⁾. 따라서 실용화 가능성이 큰 기술로서 세계적으로 큰 관심이 집중되고 있다.

SI 열화학 수소 제조 공정은 다음과 같은 세 개의 화학 반응으로 구성된다⁷⁾.

$$SO_2 + I_2 + 2H_2O \rightleftharpoons H_2SO_4 + 2HI \tag{1}$$

 $H_2SO_4 \rightleftharpoons H_2O + SO_2 + 0.5O_2 \tag{2}$

$$2HI \rightleftharpoons H_2 + I_2 \tag{3}$$

(1) 식은 분젠(bunsen) 반응이라 하며, H₂O가 SO₂ 및 I₂와 반응하여 H₂SO₄와 HI를 생성한다. 이때 생성 물들은 과량의 I₂ 존재 하에서 밀도 차이에 의하여 자 발적으로 2-액상으로 분리된다. 분리된 H₂SO₄와 HI 는 각각 H₂SO₄ 분해 단계 (2)와 HI 분해 단계 (3)로 이동하여 분해된다⁸⁾. 전체 반응을 통하여 H₂O는 H₂ 와 O₂로 분해되며, 각 분해 단계의 생성물인 SO₂, I₂ 및 H₂O는 분젠 반응으로 재순환된다. 한편, SI 공정의 통합 운전을 위하여 제안된 공정도에 의하면 H₂SO₄ 분해 단계의 생성물인 O₂가 완전히 분리되지 못하고 일부가 SO₂와 함께 분젠 반응기로 유입될 가능성이 있다⁹⁻¹⁵⁾. 또한 HI 분해 단계에서 분해되어 분젠 반응 으로 재순환되는 반응물인 I₂의 경우에도 I₂ 상태보 다는 HI_x(I₂+HI+H₂O) 용액의 형태로 공급될 가능성 이 높은 것으로 알려져 있다^{15,16)}.

Fig. 1 Schematic diagram of experimental apparatus for the Bunsen reaction

본 실험실에서는 SO₂, I₂ 및 H₂O를 반응물로 사용 하여 분젠 반응을 수행하고 다양한 변수들의 영향과 이에 따른 상 분리 조성들에 관한 연구를 수행한 바 있다¹⁷⁻²⁰⁾. 그러나 SI 공정의 통합운전 과정에서 분젠 반응기로 실제 공급될 것으로 고려되는 반응물들을 이용하여 분젠 반응을 수행하고 상 분리 조성에 미 치는 영향을 관찰할 필요성이 요구되었다.

따라서 본 연구에서는 반응기 내 존재하는 HI_x 용 액에 SO₂-O₂ 혼합물 기체를 공급하며 분젠 반응을 수 행하고 반응에 미치는 O₂의 영향을 규명하고자 하였 다. 이를 위하여 각 반응 온도(313, 323, 333 및 343K) 의 I₂ 포화 조성(HI/H₂O/I₂=1.00/6.17/2.30, 2.50, 2.90 및 3.50)에서 공급하는 기체의 종류를 SO₂ 단독 및 SO₂-O₂ 혼합물 기체로 변화시키며 분젠 반응을 수행 하고 그 결과를 상호 비교하였다. 더 나아가 333K의 I₂ 포화 조성에서 SO₂-O₂ 혼합물 기체 내 O₂/SO₂의 몰 비(O₂/SO₂=0.2, 0.3, 0.4, 0.5 및 0.6/1.0)를 변화시 키며, 혼합물 기체 내 O₂의 양에 따른 영향을 고찰하 였다.

2. 실 험

Fig. 1은 분젠 반응을 위한 실험 장치의 개략도를 나타낸 것이다. 350mL 부피의 반응기는 관찰이 용이

하도록 유리로 구성되어 있으며, 유리 이외의 부분은 부식을 방지하기 위하여 테프론으로 코팅 처리하였 다. 또한 기계적 교반 방식으로 I₂가 빠르게 용해될 수 있게 하였으며, 항온조로부터 일정한 온도로 조절 된 물이 반응기 외부를 순환할 수 있도록 하여 반응 기의 온도를 일정하게 유지하였다.

HI_x 용액을 이용한 분젠 반응을 위해 화학 적정을 통해 HI 시약(55~58wt%, Kanto)의 순도를 측정하였 다. 이때 HI/H₂O/I₂의 몰 비는 HI 0.45mol을 기준으 로 각각 1.00/6.17/2.30, 2.50, 2.90 및 3.50으로 결정 되었다. 반응을 위해 정량된 HI, H₂O 및 I₂를 반응기 에 공급한 후 반응기 내부의 온도가 설정 온도에 도 달하였을 때 30분 동안 교반하여 HI_x 용액을 제조하 였다. HI_x 용액의 제조가 종료된 후, SO₂ 및 O₂를 원 하는 몰 조성으로 혼합하여 110mL/min의 유속으로 공급하였다. 반응 시간은 반응이 충분한 평형에 도달 할 수 있도록 340분으로 결정하였다. 반응이 종료된 후 2-액상으로 분리된 생성물을 각 상으로 분리한 다 음, 무게를 측정한 후 조성 분석을 수행하였다. 이때 전체계의 양과 조성은 각 상의 양과 조성의 합으로 나타내었다.

HI와 I₂의 조성은 각각 AgNO₃ 용액과 Na₂S₂O₃ 용액 으로 Γ 및 I₂를 적정하여 결정하였고 H₂SO₄는 NaOH 용액으로 H⁺를 적정한 뒤 Γ의 적정 값을 제외하여 조 성을 결정하였다. 마지막으로 H₂O의 조성은 전체 시 료의 무게에 대한 물질 수지를 이용하여 결정하였다. 정확한 적정을 위하여 자동 전위차 적정기(Acid-base titration electrode; KEM C-171, redox titration electrode; KEM C-272, precipitation titration electrode; KEM C-373)가 사용되었다.

3. 결과 및 고찰

3.1 반응 온도 및 12 농도에 따른 상 분리 특성

3.1.1 반응물 조성

반응 온도에 따른 공급 기체의 영향을 확인하기 위 하여, 각 반응 온도(313, 323, 333 및 343K)에서 결정

Fig. 2 Effects of reactant gases (SO₂ and SO₂-O₂) on the amount of I_2 unreacted and HI produced in global system; gas flow rate 110mL/min, O₂/SO₂=0.5/1.0 molar ratio

된 I₂ 포화 조성(HI/H₂O/I₂=1.00/6.17/2.30, 2.50, 2.90 및 3.50)에서 공급하는 기체의 종류를 SO₂ 단독 및 SO₂-O₂ 혼합물 기체(O₂/SO₂의 몰 비=0.5/1.0)로 변화 시키며 반응을 수행하였다.

Fig. 2는 각 반응 온도의 L₂ 포화 조성에서 공급 기 체에 따른 전체상 내 존재하는 미반응된 L₂와 생성물 HI의 양(mol)을 나타낸 것이다. 이에 따르면 반응물 로 공급된 기체의 종류에 관계없이 313K부터 343K 로 반응 온도가 증가함에 따라 전체상에 존재하는 미반응된 L₂의 양이 증가하였으며 생성물 HI의 양은 감소하는 경향을 나타내었다. 이는 이전 연구¹⁸⁾에서 관찰된 바와 같이 온도 증가에 따른 SO₂의 용해도 감소로 설명할 수 있다. 즉, SO₂ 용해도 감소가 평형 전환율의 감소를 초래하여 반응에 참여하는 L₂의 양 을 감소시킨 것으로 사료된다. 한편, SO₂-O₂ 혼합물 기체를 이용한 분젠 반응은 SO₂ 단독 기체를 이용한 경우와 비교하여 전체상 내 존재하는 미반응된 L₂의 양이 매우 소량 증가하였고 이에 대응하여 생성물 HI의 양은 감소하는 것으로 나타났다.

Fig. 3은 공급된 H₂O로부터 H₂SO₄ 상과 HI_x 상으 로 이동한 비율을 나타낸 것이다. 각 상으로 이동한 H₂O는 몰 비를 기초로 각각 (H₂SO₄ 상내 H₂O)/(공급 된 H₂O)와 (HI_x 상내 H₂O)/(공급된 H₂O)에 의하여

Fig. 3 Effects of reactant gases (SO₂ and SO₂-O₂) on the H₂O fractions in each phase; gas flow rate 110mL/min, O₂/SO₂= 0.5/1.0 molar ratio

계산되었다. 이에 따르면 전체적인 조건에서 공급된 H₂O의 대부분이 HI_x 상내로 분배되며, 매우 소량만 이 H₂SO₄ 상으로 이동하는 것으로 나타났다. 이는 HI_x 용액 내 H₂O와 HI의 강한 결합력으로 인하여 H₂SO₄ 상내로 분배되는 H₂O의 양이 감소한 것으로 사료된 다. 한편, 각 상내로 분배되는 H₂O는 SO₂-O₂ 혼합물 기 체를 이용한 분젠 반응이 SO₂ 단독 기체를 이용한 경 우와 비교하여 HI_x 상내에서 증가하는 반면에 H₂SO₄ 상에서는 감소한 것으로 나타났다. 즉, SO₂-O₂ 혼합 물 기체를 이용한 분젠 반응의 경우 HI_x 상내 반응에 참여하는 H₂O의 양이 감소한다는 것을 의미한다.

이 결과는 I₂ 및 H₂O를 반응물로 공급한 이전 연 구²⁰⁾와 유사하며, SO₂-O₂ 혼합물 기체 내 O₂가 미반 응하는 I₂ 및 H₂O의 양을 소량 증가시키는 것으로 사 료된다.

3.1.2 각 상내 불순물

Fig. 4는 각 반응 온도의 L₂ 포화 조성에서 공급 기 체에 따른 각 상내 불순물(H₂SO₄ 상내 HI 및 L₂ 그리 고 HI_x 상내 H₂SO₄)을 각 상의 주요 성분(H₂SO₄ 상 의 H₂SO₄ 그리고 HI_x 상의 HI)을 기준으로 나타낸 것 이다. 각 상내 불순물은 반응물로 공급된 기체의 종 류에 관계없이 초기 L₂/HI의 몰 비가 2.30부터 3.50으

Fig. 4 Effects of reactant gases (SO₂ and SO₂-O₂) on the impurities in each phase; gas flow rate 110mL/min, O_2 /SO₂= 0.5/1.0 molar ratio

로 증가함에 따라 감소하는 경향을 나타내었다.

Fig. 4에서 초기 I₂/HI의 몰 비 증가에 따른 각 상 내 불순물의 감소는 Fig. 5에 나타낸 HI_x 상내 I₂/HI 몰 비 증가와 밀접한 관계가 있다. 초기 I₂/HI의 몰 비가 증가함에 따라 HI_x 상내 I₂/HI 몰 비는 SO₂ 단독 기체를 이용한 경우 약 1.02에서 2.70으로 증가하였 으며, SO₂-O₂ 혼합물 기체를 이용한 경우에는 약 1.17 에서 2.96으로 증가하는 경향을 나타내었다. 일반적

Fig. 5 Effects of reactant gases (SO₂ and SO₂-O₂) on the molar ratio of I_2/HI in HI_x phase; gas flow rate 110mL/min, O₂/SO₂=0.5/1.0 molar ratio

으로 HI_x 상내 I₂/HI의 몰 비가 증가함에 따라 상 분 리 특성이 우수해지는 것으로 알려져 있다¹⁸⁾. 즉, 초 기 I₂/HI의 몰 비 증가에 따라 형성된 밀도가 높은 HI_x 상이 H₂SO₄ 상과의 밀도 차이를 증가시켜 더 우 수한 상 분리 특성을 갖게 하는 것으로 사료된다. 한 편, H₂SO₄ 상내 불순물은 전체적인 조건에서 공급 기체의 종류에 관계없이 거의 유사하였다. 반면, HI_x 상내 불순물은 SO₂-O₂ 혼합물 기체를 이용한 분젠 반응이 SO₂ 단독 기체를 이용하였을 경우와 비교하 여 감소하였다. 이는 반응물로 공급된 SO₂-O₂ 혼합물 기체 내 O₂가 스트리핑(stripping) 효과에 의하여 하부 상인 HI_x 상내 존재하는 HI 및 불순물인 H₂SO₄를 상 부상인 H₂SO₄ 상으로 이동시킨 결과로 사료된다.

I2 및 H2O를 이용한 이전 연구 결과²⁰⁾에 따르면 333K 이상의 I2 포화 조성에서 각 상내 불순물은 공 급 기체의 종류에 따른 영향이 거의 없었다. 반면, HI_x 용액을 이용한 분젠 반응은 333K 이상의 조건에 서도 HIx 상내 불순물을 감소시키는데 영향을 미치 는 것으로 확인되었다. SO2-O2 혼합물 기체를 이용 한 분젠 반응에서 HIx 상내 불순물의 몰 비는 SO2 단 독 기체를 이용한 경우와 비교하여 전체적인 조건에 서 약 0.03 감소하는 것으로 나타났다. 이는 SO2 단 독 및 SO₂-O₂ 혼합물 기체를 공급하는 조건 하에서 반응물에 따라 반응에 참여하는 SO2의 몰 분율을 통 해 설명이 가능하다. L2 및 H2O를 이용한 분젠 반응 은 333K 이상의 I2 포화 조성에서 공급 기체의 종류 에 관계없이 반응에 참여하는 SO2의 몰 분율이 거의 유사하였다. 반면, HIx 용액을 이용한 분젠 반응은 SO₂-O₂ 혼합물 기체를 이용한 경우가 SO₂ 단독 기체 를 이용한 경우와 비교하여 반응에 참여하는 SO2의 몰 분율이 감소하는 경향을 나타내었다. SO2의 몰 분 율 감소는 용해된 I2 중에서 반응에 참여하는 양을 감소시키기 때문에 HIx 상내 I2의 농도가 증가하여 밀도가 높은 HIx 상이 형성된다. 즉, HIx 용액을 이용 한 분젠 반응이 I2 및 H2O를 이용한 경우와 비교하여 밀도가 큰 HIx 상이 생성되며, HIx 상내 불순물이 감 소하는 것으로 사료된다.

Fig. 6 Effects of O_2/SO_2 molar ratio on the I_2/H_2SO_4 and H_2O/H_2SO_4 molar ratio in global system; 333K, $I_2/HI=2.9/1.0$ molar ratio

3.2 O₂/SO₂ 몰 비에 따른 상 분리 특성

Brown 등²¹⁾에 의해 제안된 SI 공정도에 따르면 H₂SO₄ 분해 단계의 생성물인 SO₂와 O₂는 기상 및 액 상으로 분젠 반응 단계에 재순환되는 것으로 보고되었 다. SO₂-O₂ 혼합물 기체 내 O₂의 함유량에 따른 영향 을 확인하기 위하여, 333K의 I₂ 포화 조성(I₂/HI=2.90) 에서 O₂/SO₂의 몰 비를 0.2, 0.3, 0.4, 0.5 및 0.6/1.0으 로 변화시키며 반응을 수행하였다.

Fig. 6은 O₂/SO₂ 몰 비 변화에 따라 분젠 반응 생 성물 내 존재하는 I₂ 및 H₂O의 양적 변화를 관찰하기 위하여 각각 전체계의 I₂/H₂SO₄ 및 H₂O/H₂SO₄ 몰 비 로 나타낸 것이다. 이에 따르면 SO₂-O₂ 혼합물 기체 를 이용했을 때 SO₂ 단독 기체의 공급과 비교하여 I₂/H₂SO₄ 몰 비가 증가하였고 0.6의 O₂/SO₂ 몰 비 조 건에서는 14.10까지 증가되었다. H₂O/H₂SO₄ 몰 비 또 한 SO₂-O₂ 혼합물 기체를 공급하였을 때 증가하였으 며, 0.6의 O₂/SO₂ 몰 비 조건에서는 28.22까지 증가 되었다. 이는 O₂/SO₂의 몰 비가 증가함에 따라 공급 되는 SO₂의 양이 감소하기 때문에 상대적으로 생성 된 H₂SO₄의 양이 감소하고 미반응된 I₂ 및 H₂O의 양 이 미시적으로 증가한 결과로 사료된다.

Fig. 7은 O₂/SO₂ 몰 비 변화에 따른 각 상내 불순

Fig. 7 Effects of O_2/SO_2 molar ratio on the impurities in each phase; 333K, $I_2/HI=2.9/1.0$ molar ratio

물을 나타낸 것이다. 이에 따르면 전체적인 조건에서 H₂SO₄ 상내 불순물의 몰 비(HI/H₂SO₄)는 O₂/SO₂ 몰 비 변화에 관계없이 약 0.03으로 일정하였다. 반면, HI_x 상내 불순물의 몰 비(H₂SO₄/HI)는 SO₂-O₂ 혼합물 기 체를 공급하였을 때 감소하였으며, 0.6의 O₂/SO₂ 몰 비 조건에서는 0.12까지 감소되었다. 이로부터 O₂/SO₂ 몰 비의 증가는 3.1.2 절에서 설명된 O₂의 스트리핑 효과를 증가시키며, HI_x 상내 불순물을 감소시키는 데 도움을 주는 것으로 사료된다.

Fig. 8 Effects of O_2/SO_2 molar ratio on the volume fraction of each phase; 333K, $I_2/HI{=}2.9/1.0$ molar ratio

Fig. 8은 O₂/SO₂ 몰 비 변화에 따라 생성된 H₂SO₄ 상 및 HI_x 상 용액의 양(vol%)을 나타낸 것이다. 이 에 따르면 SO₂ 단독 기체의 공급으로부터 O₂/SO₂ 몰 비가 0.6까지 증가함에 따라 H₂SO₄ 상 용액의 양이 약 3.70에서 2.80vol%로 소량 감소하였다. O₂/SO₂ 몰 비의 증가는 반응에 참여하는 SO₂의 몰 분율을 점차 적으로 감소시키는 것으로 나타났다. 즉, SO₂-O₂ 혼 합물 기체 내 O₂의 함유량 증가는 생성된 H₂SO₄ 상 용액의 양을 소량 감소시키는 것으로 사료된다.

결론적으로 SO₂-O₂ 혼합물 기체 내 O₂는 반응에 직접적으로 참여하지 않았으며, 미반응하는 I₂의 양을 증가시키는 것으로 나타났다. O₂/SO₂ 몰 비의 증가는 전체 생성물 중 H₂SO₄ 상 용액의 양을 소량 감소시켰 으나 조성에는 거의 영향을 미치지 않았다. 반면, 하 부상인 HI_x 상내 불순물의 양은 O₂의 스트리핑 효과 에 의해 감소하는 것이 확인되었다. 한편, Richards 등에 의해 보고된 결과¹⁶⁾에 따르면 분젠 반응 단계에 서 배출되는 O₂가 가스 세척탑을 통하여 SI 공정 외 부로 배출되는 것으로 보고되었다. 본 연구에서 확인 한 SO₂-O₂ 혼합물 기체 내 O₂의 스트리핑 효과를 바 탕으로 HI_x 용액의 정제 단계에 O₂를 사용할 경우 정 제 효과를 얻을 수 있을 것으로 판단된다.

4. 결 론

본 연구에서는 SI 열화학 수소 제조 공정의 통합 운전을 위하여 분젠 반응 단계로 재순환되는 HI_x 용 액 및 SO₂-O₂ 혼합물 기체를 반응물로 공급하여 반 응을 수행한 후 O₂의 영향을 연구하였으며, 다음과 같은 결론을 얻었다.

 각 반응 온도의 I₂ 포화 조성에서 공급 기체의 종 류에 따른 조성을 확인한 결과, SO₂-O₂ 혼합물 기 체를 공급하는 경우 반응에 참여하는 I₂ 및 H₂O의 양이 감소하는 것으로 나타났다. 또한 혼합물 기 체 내 O₂가 반응에 직접적으로 참여하지 않는 것 으로 판단하였다.

2) SO₂-O₂ 혼합물 기체 내 O₂는 H₂SO₄ 상내 불순물

의 양에는 영향을 미치지 않는 반면에 HI_x 상내 불순물의 양을 감소시키는 것으로 나타났다. 이는 하부상인 HI_x 상으로 공급되는 O₂의 스트리핑 효 과에 의하여 HI_x 상내 HI 및 H₂SO₄ 성분 일부분 이 H₂SO₄ 상으로 이동된 결과로 사료된다.

- 3) SO₂-O₂ 혼합물 기체를 이용한 분젠 반응은 SO₂ 단독 기체를 이용한 반응과 비교하여 전체적인 조건에서 밀도가 큰 HI_x 상이 형성되었으며, 이로 인하여 HI_x 상내 불순물의 양이 감소하는 것으로 사료된다.
- 4) O₂/SO₂의 몰 비가 증가함에 따라 생성된 H₂SO₄ 상 용액의 양이 소량 감소하였으나 조성에는 큰 영향을 미치지 않았다. 반면, SO₂-O₂ 혼합물 기체 를 이용함으로써 HI_x 상내 불순물의 양은 감소되 는 것을 확인하였다.

후 기

본 연구는 "원자력수소 핵심기술개발사업"의 일 환으로 추진된 것이며 교육과학기술부의 재정지원에 감사드립니다.

참 고 문 헌

- J. E. Funk, "Thermochemical hydrogen production: past and present", Int. J. Hydrogen Energy, Vol. 26, No. 3, 2001, p. 185.
- J. E. Funk, and R. M. Reinstrom, "Energy Requirements in the Production of Hydrogen from Water", Ind. Eng. Chem. Proc. Des. Develop., Vol. 5, No. 3, 1966, p. 336.
- S. Kubo, H. Kasahara, H. Okuda, A. Terada, N. Tanaka, Y. Inaba, H. Ohashi, Y. Inagaki, K. Onuki, and R. Hino, "A pilot test plan of the thermochemical water-splitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, No. 1-3, 2004, p. 355.
- S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, "Effects of process parameters of the IS process on total thermal

efficiency to produce hydrogen from water", J. Chem. Eng. Japan, Vol. 36, No. 7, 2003, p. 887.

- S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, "Thermal efficiency evaluation of HI synthesis/ concentration procedures in the thermochemical water splitting IS process", Int. J. Hydrogen Energy, Vol. 29, No. 6, 2004, p. 579.
- S. Goldstein, J. M. Borgard, and X. Vitart, "Upper bound and best estimate of the efficiency of the iodine sulfur cycle", Int. J. Hydrogen Energy, Vol. 30, No. 6, 2005, p. 619.
- S. Kubo, H. Nakajima, and A. Onuki, "A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, No. 1-3, 2004, p. 347.
- A. Giaconia, G. Caputo, and S. Sau, "Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle", Int. J. Hydrogen Energy, Vol. 32, No. 5, 2007, p. 531.
- J. H. Norman, G. E. Besenbruch, and D. R. O'keefe, "Thermochemical water-splitting for hydrogen production", GRI-80/0105, Gas Research Institute, 1981.
- N. Sakaba, S. Kasahara, K. Onuki, and K. Kunitomi, "Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR", Int. J. Hydrogen Energy, Vol. 32, No. 17, 2007, p. 4160.
- K. Y. Lee, H. G. Kim, K. D Jung, and C. S. Kim, "SO₂/O₂ Separation Process with EMIm[EtSO₄] in SI Cycle for the Hydrogen Production by Water Splitting", Trans. of the Korean Society of Hydrogen Energy, Vol. 22, No. 1, 2011, p. 13.
- K. Y. Lee, K. H. Song, K. S. Yoo, H. G. Kim, K. D. Jeong, and C. S. Kim, "SO₂/O₂ Separation with [DMlm]MeSO₄ in IS cycle", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 1, 2008, p. 49.
- 13. T. H. Kim, C. H. Shin, O. S. Joo, and K. D.

Jung, "SO₃ Decomposition Catalysis in SI Cycle to Produce Hydrogen", Trans. of the Korean Society of Hydrogen Energy, Vol. 22, No. 1, 2011, p. 21.

- P. Zhang, S. Z. Chen, L. J. Wang, T. Y. Yao, and J. M. Xu, "Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodinesulfur process", Int. J. Hydrogen Energy, Vol. 35, No. 19, 2010, p. 10166.
- W. C. Cho, C. S. Park, K. S. Kang, C. H. Kim, and K. K. Bae, "Conceptual design of sulfur-iodine hydrogen production cycle of Korea Institute of Energy Research", Nucl. Eng. Des., Vol. 239, No. 3, 2009, p. 501.
- M. B. Richards, A. S. Shenoy, L. C. Brown, R. T. Buchingham, E. A. Harvego, K. L. Peddicord, S. M. M. Reza, and J. P. Coupey, "H₂-MHR pre-conceptual design report: S-I-based plant", GA-A25401, General Atomics Report, 2006.
- K. J. Lee, S. H. Ahn, Y. H. Kim, C. S. Park, and K. K. Bae, "The Comparison of Bunsen Reaction with Phase Separation in Sulfur-Iodine Thermochemical Hydrogen Production Process", Trans. of the Korean

Society of Hydrogen Energy, Vol. 19, No. 2, 2008, p. 111.

- K. J. Lee, Y. H. Kim, C. S. Park, and K. K. Bae, "Phase Separation Characteristics via Bunsen Reaction in Sulfur-Iodine Thermochemical Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 5, 2008, p. 386.
- K. J. Lee, D. W. Hong, Y. H. Kim, C. S. Park, and K. K. Bae, "The Control of Side Reactions in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 6, 2008, p. 490.
- D. W. Hong, H. S. Kim, Y. H. Kim, C. S. Park, and K. K. Bae, "The Role of Oxygen in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 21, No. 4, 2010, p. 278.
- L. C. Brown, G. E. Besenbruch, R. D. Lentsch, K. R. Schultz, J. F. Funk, P. S. Pickard, A. C. Marshall, and S. K. Showalter, "High efficiency generation of hydrogen fuels using nuclear power", GRI-80/0105, Gas Research Institute, 2002.